• Title/Summary/Keyword: thickness mode

Search Result 1,133, Processing Time 0.032 seconds

Stress Intensity Factors of a Combined Mode (I/III) Crack in a Variable Thickness Plate -CT Type- (두께가 변화하는 부재 내의 혼합모드 (I/III)균열의 응력확대계수 -CT형-)

  • 조명래
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.24-31
    • /
    • 1998
  • Variable thickness plates are commonly encountered in the majority of mechanical/structural components of industrial applications. And, as a result of the unsymmetry of the structure or the load and the anisoptropy of the materials, the cracks in engineering structures are generally subjected to combined stresses. In spite of considerable practical interest, however, a few fracture mechanics study on combined mode crack in a variable thickness plate have carried out. In this respect, combined mode I/III stress intensity factors $K_I$ and $K_III$ at the crack tip for a variable thickness plate were obtained by 3-dimensional finite element analysis. Variable thickness plates containing a central slant crack were chosen. The parameters used in this study were dimensionless crack length $\lamda$, crack slant angle $\alpha$, thickness ratio $\beta$ and width ratio $\omega$. Stress intensity factors were calculated by crack opening displacement(COD) and crack tearing displacement(CTD) method.

  • PDF

Analysis of Mixed Mode Delamination in Graphite/Epoxy Composite (흑연/에폭시 복합재료의 혼합모우드 층간분리 해석)

  • Yum, Y. J.;You, H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.171-178
    • /
    • 1996
  • DCB(pure mode I) and CLS(mixed mode) tests were performed to investigate the effect of fracture mode on the interlaminar fracture of composite laminate. Mode I critical strain energy release rate was found to be $133J/m^2$ from the DCB test and total strain energy release rate decreased from $1, 270J/m^2$ as thickness ratio(tl/t) varied from 0.333 to 0.667 from the crease from the CLS test. Crack length had no effect on the total strain energy release rate and load was almost constant during the crack growth of the specimen which had the specific thickness ratio. Crack initiated when the stress of the strap ply reached constant stress $42kgf/mm^2$ which was found to be independent of the thickness ratio.

  • PDF

Effects of foam core density and face-sheet thickness on the mechanical properties of aluminum foam sandwich

  • Yan, Chang;Song, Xuding
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1145-1156
    • /
    • 2016
  • To study the effects of foam core density and face-sheet thickness on the mechanical properties and failure modes of aluminum foam sandwich (AFS) beam, especially when the aluminum foam core is made in aluminum alloy and the face sheet thickness is less than 1.5 mm, three-point bending tests were investigated experimentally by using WDW-50E electronic universal tensile testing machine. Load-displacement curves were recorded to understand the mechanical response and photographs were taken to capture the deformation process of the composite structures. Results demonstrated that when foam core was combined with face-sheet thickness of 0.8 mm, its carrying capacity improved with the increase of core density. But when the thickness of face-sheet increased from 0.8 mm to 1.2 mm, result was opposite. For AFS with the same core density, their carrying capacity increased with the face-sheet thickness, but failure modes of thin face-sheet AFS were completely different from the thick face-sheet AFS. There were three failure modes in the present research: yield damage of both core and bottom face-sheet (Failure mode I), yield damage of foam core (Failure mode II), debonding between the adhesive interface (Failure mode III).

Trajectory of Resonant Displacement of Thickness Vibration Mode Piezoelectric Devices According to Diameter/Thickness Ratio (두께와 직경 비에 따른 두께진동모드 압전소자의 공진 변위 궤적)

  • Jeong, Yeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.105-109
    • /
    • 2012
  • In this study, thickness vibration mode piezoelectric devices for AE sensor application were simulated using ATILA FEM program, and then fabricated. Trajectory resonant displacement and electro mechanical coupling factors of the piezoelectric devices were investigated. The simulation results showed that excellent displacement and electro mechanical coupling factor was obtained when the ratio of diameter/thickness($\Phi/T$) was 0.75. The piezoelectric device of $\Phi/T$=0.75 exhibited the optimum values of fr= 183 kHz, displacement= $4.44{\times}10^{-7}[m]$, $k_{33}$= 0.69, which were suitable for the application of AE sensor piezoelectric device.

Optimization of 1-3 Type Piezocomposite Structures Considering Inter-Pillar Vibration Modes (Inter-Pillar 진동 모드를 고려한 1-3형 압전복합체의 구조 최적화)

  • Pyo, Seonghun;Kim, Jinwook;Roh, Yongrae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.6
    • /
    • pp.434-440
    • /
    • 2013
  • With polymer properties and ceramic volume fraction as design variables, the optimal structure of 1-3 piezocomposites has been determined to maximize the thickness mode electromechanical coupling factor. When the piezocomposite vibrates in a thickness mode, inter-pillar resonant modes are likely to occur between lattice-structured piezoceramic pillars and polymer matrix, which significantly deteriorates the performance of the piezocomposite. In this work, a new method to design the structure of the 1-3 type piezocomposite is proposed to maximize the thickness mode electromechanical coupling factor while preventing the occurrence of the inter-pillar modes. Genetic algorithm was used for the optimal design, and the finite element analysis method was used for the analysis of the inter-pillar mode.

A Study on the Influence Factors on Flexural and Thickness Modes in the Impact-echo Test (충격반향기법에서의 휨 모드 및 두께 모드의 영향인자에 대한 연구)

  • Oh, Tae-Keun;Park, Jongl-Il;Byun, Yoseph;Lee, Young-Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.659-666
    • /
    • 2015
  • In this paper, various influence factors on the impact-echo test which is an effective method in characterizing defects such as such as the delamination in the concrete structures were studied. The side to thickness ratio(a/h), the relative position of impacting and sensing points over the delamination that have great effects on the flexural and impact-echo(thickness) modes were investigated and examined by the parametric finite element analysis. As a result, the flexural modes dominate in the case of a/h > 2 and the thickness mode was more evident when a/h < 2. With regard to the relative position of impact source and sensing point to the defect, the flexural modes dominate even when either the loading or sensing point was over the delamination defect. However, the thickness mode prevails when both the impacting and sensing points are over the solid region beyond the delamination area.

Modal Analysis of the Bell Type Shell with Thickness and Asymmetric Effects (鐘形셀의 두께變化 및 非對稱效果에 따른 振動모우드 解析에 관한 硏究)

  • 정석주;공창덕;염영하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.383-391
    • /
    • 1986
  • Mode shapes and natural frequencies of the bell type shell are analyzed numerically by the finite element method. The impulse hammer method and the Fast Fourier Transform analyzer are used for the experimental test. All types of mode shapes are expressed by the computer graphics. Numerical solutions are good agreement with the experimental results. The sustaining sound of the typical bell-type shell depend upon the first flexural mode (0-2 mode) and the second flexural mode (0-3 mode), and their mode shapes are independent upon thickness Dangjwas, holes, and added mass effects. Asymmetric effects by Dangjwas, holes and added mass give rise to beat frequencies, and the added mass is found to be most effective.

Optimization to Control Buckling Temperature and Mode Shape through Continuous Thickness Variation of Composite Material (복합소재의 연속 두께 변화를 통한 좌굴온도 및 모드형상 최적화)

  • Lee, Kang Kuk;Lee, Hoo Min;Yoon, Gil Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.347-353
    • /
    • 2021
  • In this study, we presented a novel size optimization framework to control the linear buckling temperature and several buckling modes of plates, by optimizing thickness values of composite structures for practical engineering applications. Predicting the buckling temperature and mode shape of structures is a vital research topic in engineering to achieve structural stability. However, optimizing designs of engineering structures through engineering intuition is challenging. To address this limitation, we proposed a method that combines finite element simulation and size optimization. Based on the idea that the structural buckling temperature and mode shape of a plate are affected by the thickness of the structure, the thickness values of the nodes of the target structure were set as the design variables in this optimization method; and the buckling temperature values, and buckling mode shapes were set as the objective functions. This size optimization method enabled the determination of optimal thickness distributions, to induce the desired buckling temperature values and mode shapes. The validity of the proposed method was verified in terms of their buckling temperature values and buckling mode shapes, using several numerical examples of rectangular composite structures.

Evaluation for the Usefulness of Copper Filters according to Mode Change in Digital Radiography System (DR 시스템에서 모드 변화에 따른 구리필터의 유용성 평가)

  • Kim, Jae-Kyeom;Kim, Jeong-Koo
    • Journal of radiological science and technology
    • /
    • v.44 no.1
    • /
    • pp.39-46
    • /
    • 2021
  • This study confirmed the usefulness of the copper filter according to the mode change by comparing and analyzing the energy change according to the application of the copper filter and the change in effective dose and image quality according to the distance to the subject in the DR(Digital Radiography) system. The average energy increased when the copper filter was applied and the reduction rate by 50% of mAs was increased as the thickness of the copper filter increased according to the application of the 10 kVp rule in AEC mode. The effective dose decreased as the thickness increased when the copper filter was applied in AEC(Automatic Exposure Control) mode and manual mode according to the application of the 10 kVp rule, and the decrease rate decreased with increasing 10 kVp increments. As a result of analyzing the dicom images for AEC mode and manual mode with Image J. the PSNR(Peak Signal to Noise Ratio) values were approximate values of less than 30 dB for each mode and for each copper filter thickness. When the copper filter was applied, the average energy increased, so when the 10 kVp rule was applied, the mAs for each mode could be reduced, and the effective dose could also be reduced. However, as the distance and tube voltage increased, the reduction rate of mAs decreased, and the quality of the image was found to decrease when the copper filter was applied, but there was no difference in quality of the image when the copper filter thickness increased.

A study on magnetic layer thickness effects on magnetic properties of CoCrPt/Ti perpendicular media.

  • M. S. Hwang;Lee, T. D.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.369-376
    • /
    • 2000
  • Change of magnetic properties in CoCrPt/Ti perpendicular media with varying CoCrPt films thickness has been studied. As CoCrPt films thickness increase, the Ms(magnetization saturation) drastically increases at thinner thickness and gradually increases with further increase in thickness from 25nm. This Ms behaviour is associated with primarily the formation of "amorphous-like" reacted layer by intermixing of CoCrPt and Ti at CoCrPt/Ti interface and secondarily change of Cr segregation mode with varying the CoCrPt films thickness. Magnetic domain structure distinctively changes with increasing CoCrPt magnetic layer(ML) thickness. Also the strength of exchange coupling measured from the slope in demagnetizing region in M-H loop changes with ML thickness. Details of the above magnetic properties will be discussed. The expansion of lattice parameters a and c at thinner thickness suggests that Cr segregation mode may be connected with the residual stress of the films. Finally, negative nucleation field(Hn) behaviour with the exchange slope will be reported.

  • PDF