Browse > Article
http://dx.doi.org/10.4313/JKEM.2013.26.6.434

Optimization of 1-3 Type Piezocomposite Structures Considering Inter-Pillar Vibration Modes  

Pyo, Seonghun (Department of Mechanical Engineering, Kyungpook National University)
Kim, Jinwook (Department of Mechanical Engineering, Kyungpook National University)
Roh, Yongrae (Department of Mechanical Engineering, Kyungpook National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.26, no.6, 2013 , pp. 434-440 More about this Journal
Abstract
With polymer properties and ceramic volume fraction as design variables, the optimal structure of 1-3 piezocomposites has been determined to maximize the thickness mode electromechanical coupling factor. When the piezocomposite vibrates in a thickness mode, inter-pillar resonant modes are likely to occur between lattice-structured piezoceramic pillars and polymer matrix, which significantly deteriorates the performance of the piezocomposite. In this work, a new method to design the structure of the 1-3 type piezocomposite is proposed to maximize the thickness mode electromechanical coupling factor while preventing the occurrence of the inter-pillar modes. Genetic algorithm was used for the optimal design, and the finite element analysis method was used for the analysis of the inter-pillar mode.
Keywords
1-3 piezocomposite; Inter-pillar mode; Optimization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. K. Akdogan, M. Allahverdi, and A. Safari, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 32, 1 (1986).
2 R. E. Newnham, D. P. Skinner, and L. E. Cross, Mater. Res. Bull., 13, 525 (1978).   DOI   ScienceOn
3 M. Avellaneda and P. J. Swart, J. Acoust. Soc. Am., 103, 1449 (1998).   DOI   ScienceOn
4 K. C. Benjamin, J. Electroceram., 8, 145 (2002).   DOI   ScienceOn
5 C. Xina, X. Dongyub, L. Lingchaoa, H. Shifenga, and J. Minhuab, Mater. Chem. Phys., 121, 63 (2010).   DOI   ScienceOn
6 O. Sigmund, S. Torquato, and I. A. Aksay, J. Mater. Res., 13, 1038 (1998).   DOI   ScienceOn
7 L. V. Giviansky and S. Torquato, Struct. Optim., 13, 23 (1997).   DOI   ScienceOn
8 W. A. Smith and B. A. Auld, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 38, 40 (1991).   DOI   ScienceOn
9 W. A. Smith, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 40, 41 (1993).   DOI   ScienceOn
10 B. A. Auld and Y. Wang, IEEE Trans. Ultrason. Symp., 528 (1984).
11 D. Certon, F. Patat, F. Levassort, G. Feuillard, and B. Karlsson, J. Acoust. Soc. Am., 101, 2043 (1997).   DOI
12 P. Reynolds, J. Hyslop, and G. Hayward, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2, 1650 (2003).
13 F. Craciun, L. Sorba, E. Molinari, and M. Pappalardo, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 36, 50 (1989).   DOI   ScienceOn
14 Y. Wang, Waves and Vibration in Elastic Superlattice Composite (Ph.D. Dissertation, Stanford Univ., 1986).
15 D. Robertson, G. Hayward, A. Gachagan, and V. Murray, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 53, 1503 (2006).   DOI   ScienceOn
16 C. N. Della and D. Shu, Sens. Actuat. A Phys., 40, 206 (2007).
17 H. L. W. Chan and J. Unsworth, IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 36, 434 (1989).   DOI   ScienceOn
18 J. F. Nye, Physical Properties of Crystals (Oxford Univ. Press, New York, 1985).
19 T. R. Gururaja, W. A. Schulze, L. E. Cross, R. E. Newnham, B. A. Auld, and Y. J. Wang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 32, 481 (1985).
20 R. E. Newnham, Ferroelect., 68, 1 (1986).   DOI