• Title/Summary/Keyword: thermophilic enzyme

Search Result 97, Processing Time 0.028 seconds

Regioselective Oxidation of Lauric Acid by CYP119, an Orphan Cytochrome P450 from Sulfolobus acidocaldarius

  • Lim, Young-Ran;Eun, Chang-Yong;Park, Hyoung-Goo;Han, Song-Hee;Han, Jung-Soo;Cho, Kyoung-Sang;Chun, Young-Jin;Kim, Dong-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.574-578
    • /
    • 2010
  • Archaebacteria Sulfolobus acidocaldarius contains the highly thermophilic cytochrome P450 enzyme (CYP119). CYP119 possesses stable enzymatic activity at up to $85^{\circ}C$. However, this enzyme is still considered as an orphan P450 without known physiological function with endogenous or xenobiotic substrates. We characterized the regioselectivity of lauric acid by CYP119 using the auxiliary redox partner proteins putidaredoxin (Pd) and putidaredoxin reductase (PdR). Purified CYP119 protein showed a tight binding affinity to lauric acid ($K_d=1.1{\pm}0.1{\mu}M$) and dominantly hydroxylated (${\omega}-1$) position of lauric acid. We determined the steady-state kinetic parameters; $k_{cat}$ was 10.8 $min^{-1}$ and $K_m$, was 12 ${\mu}M$. The increased ratio to $\omega$-hydroxylated production of lauric acid catalyzed by CYP119 was observed with increase in the reaction temperature. These studies suggested that the regioselectivity of CYP119 provide the critical clue for the physiological enzyme function in this thermophilic archaebacteria. In addition, regioselectivity control of CYP119 without altering its thermostability can lead to the development of novel CYP119-based catalysts through protein engineering.

Identification and Characterization of a Novel Thermostable GDSL-Type Lipase from Geobacillus thermocatenulatus

  • Jo, Eunhye;Kim, Jihye;Lee, Areum;Moon, Keumok;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.483-491
    • /
    • 2021
  • Two putative genes, lip29 and est29, encoding lipolytic enzymes from the thermophilic bacterium Geobacillus thermocatenulatus KCTC 3921 were cloned and overexpressed in Escherichia coli. The recombinant Lip29 and Est29 were purified 67.3-fold to homogeneity with specific activity of 2.27 U/mg and recovery of 5.8% and 14.4-fold with specific activity of 0.92 U/mg and recovery of 1.3%, respectively. The molecular mass of each purified enzyme was estimated to be 29 kDa by SDS-PAGE. The alignment analysis of amino acid sequences revealed that both enzymes belonged to GDSL lipase/esterase family including conserved blocks with SGNH catalytic residues which was mainly identified in plants before. While Est29 showed high specificity toward short-chain fatty acids (C4-C8), Lip29 showed strong lipolytic activity to long-chain fatty acids (C12-C16). The optimal activity of Lip29 toward p-nitrophenyl palmitate as a substrate was observed at 50℃ and pH 9.5, respectively, and its activity was maintained more than 24 h at optimal temperatures, indicating that Lip29 was thermostable. Lip29 exhibited high tolerance against detergents and metal ions. The homology modeling and substrate docking revealed that the long-chain substrates showed the greatest binding affinity toward enzyme. Based on the biochemical and insilico analyses, we present for the first time a GDSL-type lipase in the thermophilic bacteria group.

Partial Purification and Characterization of Thermostable Esterase from the Hyperthermophilic Archaeon Sulfolobus solfataricus

  • Chung Young Mi;Park Chan B.;Lee Sun Bok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.53-56
    • /
    • 2000
  • A thermostable esterase from the hyper thermophilic archaeon Sulfolobus solfataricus was partially purified 590-fold with $16.2\%$ recovery. The partially purified esterase had a specific activity of $29.5\;{\mu}mol\;min^{-1}mg^{-1}$ when the enzyme activity was determined using p-nitrophenyl butyrate as a substrate. The apparent molecular weight was about 100 kDa, while the optimum temperature and pH for esterase were $75^{\circ}C$ and 8.0, respectively. The enzyme showed high thermal stability and solvent tolerance in comparison to its mesophilic counterpart. The enzyme also showed chiral resolution activity for (S)-ibuprofen, indicating that S. solfataricus esterase can be used for the production of commercially important chiral drugs.

  • PDF

Purification and Characterization of a Bacillus sp. DG0303 Thermostable $\alpha$-Glucosidase with Oligo-l,6-glucosidase Activity

  • Park, Jong-Sung;Kim, Il-Han;Lee, Yong-Eok
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.3
    • /
    • pp.270-276
    • /
    • 1998
  • Extracellular ${\alpha}$-glucosidase was purified to homogeneity from moderately thermophilic Bacillus sp. DG0303. The thermostable ${\alpha}$-glucosidase was purified by ammonium sulfate fractionation, ion-exchange chromatography, preparative polyacrylamide gel electrophoresis (PAGE), and electroelution. The molecular weight of the enzyme was estimated to be 60 kDa by SDS-PAGE. The optimum temperature for the action of the enzyme was at $60^{\circ}C$. It had a half-life of 35 min at $60^{\circ}C$. The enzyme was stable at the pH range of 4.5~7.0 and had an optimum pH at 5.0. The enzyme preparation did not require any metal ion for activity. The thermostable ${\alpha}$-glucosidase hydrolyzed the ${\alpha}$-1,6-linkages in isomaltose, isomaltotriose, and panose, and had little or no activity with maltooligosaccharides and other polysaccharides. The $K_m$ (mM) for p-nitrophenyl-${\alpha}$-D-glucopyranoside (pNPG), panose, isomaltose, and isomaltotriose were 4.6, 4.7, 40.8, and 3.7 and the $V_{max}$(${\mu}mol{\cdot}min^-1$$mg^-1$) for those substrates were 5629, 1669, 3410, and 1827, respectively. The N-terminal amino acid sequence of the enzyme was MERVWWKKAV. Based on its substrate specificity and catalytic properties, the enzyme has been assigned to be an oligo-1,6-glucosidase.

  • PDF

A Thermostable Protease Produced from Bacillus sp. JE 375 Isolated from Korean Soil (한국의 토양으로부터 내열성 단백질 분해효소를 생산하는 Bacillus sp. JE 375의 선별)

  • Kim, Ji-Eun;Bai, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.419-426
    • /
    • 2006
  • A thermophilic microorganism, strain JE 375, which produces a thermostable protease, was isolated from soil and compost in Korea. This gram-positive, rod-shaped, catalase positive, motility positive, and hemolysis ${\beta}$ containing organism was implicated in glucose fermentation, mannitol fermentation, xylose oxidation, aerobic activity and spore formation. The color of the colony was yellowish white. The temperature range for growth at pH 6.5 was between 55 and $70^{\circ}C$, with an optimum growth temperature of $65^{\circ}C$. This result confirmed the strain JE 375 as a thermophilic microorganism. The enzyme was produced aerobically at $65^{\circ}C$ during 20 hr in a medium (pH 6.5) containing 1% trypton. 1% maltose, 0.5% yeast extract and 1% NaCl. The 16S rDNA of strain JE 375 had 97.6% sequence similarity with the 16S rDNA of Bacillus caldoxyloyticus. On the basis of biochemical and physiological properties and phylogenetic analysis, we named the isolated strain as Bacillus sp. JE 375. The thermostable protease from Bacillus sp. JE 375 had been partially purified and characterized. The molecular weight of the enzyme was deduced from SDS-PAGE and gel chromatography as 55 kDa and its optimal temperature was $60^{\circ}C$. The enzyme showed its highest activity at pH 7.5 and was stable from pH 7.0 to 8.0.

Studies on the Production of Thermostable Amylase. Part 1. Optimal Culture Conditions and Purification of Enzyme. (내열성 Amylase의 생산에 관한 연구 (제1보) 최적배양조건과 효소의 정제)

  • 오두환;이강표;변유량;유주현
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.2
    • /
    • pp.91-97
    • /
    • 1981
  • A thermophilic soil isolate Bacillus sp. Y-127 was selected for the production of thermostable amylase. The strain was used for the enzyme production and the thermostable amylase was characterized. The optimum cultural conditions for the enzyme production were 6$0^{\circ}C$ at pH 7.0 for 32 hours using a mineral medium containing 2% soluble starch and 0.2% yeast extract. The extra-cellular enzyme was purified about 123-folds with about 6% recovery. The purified enzyme was stable at pH between 4.0 and 7.0, and temperature up to 6$0^{\circ}C$.

  • PDF

Immobilization on Chitosan of a Thermophilic Trehalose Synthase from Thermus thermophilus HJ6

  • Kim, Hyun-Jung;Kim, Ae-Ran;Jeon, Sung-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.513-517
    • /
    • 2010
  • A thermostable trehalose synthase (TtTSase) from Thermus thermophilus HJ6 was immobilized on chitosan activated with glutaraldehyde. The yield of immobilization was evaluated as 39.68%. The optimum pH of the immobilized enzyme was similar to that of the free enzyme. However, the optimal temperature ranges were shifted by about $4^{\circ}C$ owing to better thermal stability after immobilization. The half-life of heat inactivation for free and immobilized enzymes was 5.7 and 6.3 days at $70^{\circ}C$, respectively, thus showing a lager thermostability of the immobilized enzyme. When tested in batch reaction, the immobilized enzyme retained its relative activity of 53% after 30 reuses of reaction within 12 days, and still retained 82% of its initial activity even after 150 days at $4^{\circ}C$. A packed-bed bioreactor with immobilized enzyme showed a maximum yield of 56% trehalose from 100 mM maltose in a continuous recycling system (bed volume: 10 ml) under conditions of pH 7.0 and $70^{\circ}C$.

Studies on the $\beta$-Galactosidase from Thermophilic Bacterium - On the Production, Purification of Enzyme and the Properties of the Purified Enzyme - (고온성세균의 $\beta$-Galactosidase에 관한 연구( II )-효소의 생산, 정제 및 정제효소의 성질-)

  • 오만진;이종수;김해중;김찬조
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.1
    • /
    • pp.15-21
    • /
    • 1983
  • This experiment was carried out to optimize the condition for the enzyme production by selected strain in the basal medium, to purify the enzyme and to characterize the purified enzyme. The results obtained were as follows. 1. The optimal conditions for the $\beta$-galactosidase production were initial pH 7.0 and temperature $65^{\circ}C$. 2. Enzyme was induced by the addition of lactose and galactose, and it was intracellular enzyme. 3. The purified enzyme was obtained with the increased level of activity approximately 28.5 folds as compared with crude enzyme and the yield of 15.2% by means of DEAE-Cellulose column chromatography, Sephadex G-150 gel filtration 4. $\beta$-galactosidase from final step of purification showed a sing1e protein band on polyacrylamide gel disc electrophoresis. 5. The optimal temperature and pH of the purified enzyme were $65^{\circ}C$, pH 6.5 for the hydrolysis of lactose.

  • PDF

New Action Pattern of a Maltose-forming α-Amylase from Streptomyces sp. and its Possible Application in Bakery

  • Ammar, Youssef Ben;Matsubara, Takayoshi;Ito, Kazuo;Iizuka, Masaru;Limpaseni, Tipaporn;Pongsawasdi, Piamsook;Minamiura, Noshi
    • BMB Reports
    • /
    • v.35 no.6
    • /
    • pp.568-575
    • /
    • 2002
  • An $\alpha$-amylase (EC 3.2.1.1) was purified that catalyses the production of a high level of maltose from starch without the attendant production of glucose. The enzyme was produced extracellularly by thermophilic Streptomyces sp. that was isolated from Thailand's soil. Purification was achieved by alcohol precipiation, DEAE-Cellulose, and Gel filtration chromatographies. The purified enzyme exhibited maximum activity at pH 6-7 and $60^{\circ}C$. It had a relative molecular mass of 45 kDa, as determined by SDS-PAGE. The hydrolysis products from starch had $\alpha$-anomeric forms, as determined by $^1H$-NMR. This maltose-forming $\alpha$-amylase completely hydrolyzed the soluble starch to produce a high level of maltose, representing up to 90%. It hydrolyzed maltotetrose and maltotriose to primarily produce maltose (82% and 62%, repectively) without the attendant production of glucose. The high maltose level as a final end-product from starch and maltooligosaccharides, and the unique action pattern of this enzyme, indicate an unusual maltose-forming system. After the addition of the enzyme in the bread-baking process, the bread's volume increased and kept its softness longer than when the bread had no enzyme.

Purification and Characterization of a Thermophilic Cellulase from a Novel Cellulolytic Strain, Paenibacillus barcinonensis

  • Asha, Balachandrababu Malini;Revathi, Masilamani;Yadav, Amit;Sakthivel, Natarajan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1501-1509
    • /
    • 2012
  • A novel bacterial strain, MG7, with high cellulase activity was isolated and identified by morphological characteristics and molecular phylogeny analysis as Paenibacillus barcinonensis. Maximum production of cellulase by MG7 was observed at pH 7.0 and $35^{\circ}C$. The enzyme was purified with a specific activity of 16.88 U/mg, the cellulase activity was observed in a zymogram, and its molecular mass (58.6 kDa) was confirmed by SDS-PAGE. The purified enzyme showed maximum activity at pH 6.0 and $65^{\circ}C$ and degraded cellulosic substrates such as carboxy methyl cellulose (CMC), Avicel, filter paper, and ${\beta}$-glucan. The enzyme showed stability with 0.5% concentration of various surfactants. The $K_m$ and $V_{max}$ of cellulase for CMC and Avicel were found to be 0.459mg/ml and 10.46mg/ml/h, and 1.01 mg/ml and 10.0 mg/ml/h, respectively. The high catalytic activity and its stability to temperature, pH, surfactants, and metal ions indicated that the cellulase enzyme by MG7 is a good candidate for biotechnological applications.