Browse > Article
http://dx.doi.org/10.4014/jmb.0909.09007

Regioselective Oxidation of Lauric Acid by CYP119, an Orphan Cytochrome P450 from Sulfolobus acidocaldarius  

Lim, Young-Ran (Department of Biological Sciences, Konkuk University)
Eun, Chang-Yong (Department of Biological Sciences, Konkuk University)
Park, Hyoung-Goo (Department of Biological Sciences, Konkuk University)
Han, Song-Hee (Department of Biological Sciences, Konkuk University)
Han, Jung-Soo (Department of Biological Sciences, Konkuk University)
Cho, Kyoung-Sang (Department of Biological Sciences, Konkuk University)
Chun, Young-Jin (College of Pharmacy, Chung-Ang University)
Kim, Dong-Hak (Department of Biological Sciences, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.3, 2010 , pp. 574-578 More about this Journal
Abstract
Archaebacteria Sulfolobus acidocaldarius contains the highly thermophilic cytochrome P450 enzyme (CYP119). CYP119 possesses stable enzymatic activity at up to $85^{\circ}C$. However, this enzyme is still considered as an orphan P450 without known physiological function with endogenous or xenobiotic substrates. We characterized the regioselectivity of lauric acid by CYP119 using the auxiliary redox partner proteins putidaredoxin (Pd) and putidaredoxin reductase (PdR). Purified CYP119 protein showed a tight binding affinity to lauric acid ($K_d=1.1{\pm}0.1{\mu}M$) and dominantly hydroxylated (${\omega}-1$) position of lauric acid. We determined the steady-state kinetic parameters; $k_{cat}$ was 10.8 $min^{-1}$ and $K_m$, was 12 ${\mu}M$. The increased ratio to $\omega$-hydroxylated production of lauric acid catalyzed by CYP119 was observed with increase in the reaction temperature. These studies suggested that the regioselectivity of CYP119 provide the critical clue for the physiological enzyme function in this thermophilic archaebacteria. In addition, regioselectivity control of CYP119 without altering its thermostability can lead to the development of novel CYP119-based catalysts through protein engineering.
Keywords
P450; CYP119; lauric acid; oxidation; regioselectivity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Dierks, E. A., Z. Zhang, E. F. Johnson, and P. R. Ortiz de Montellano. 1998. The catalytic site of cytochrome P4504A11 (CYP4A11) and its L131F mutant. J. Biol. Chem. 273: 23055-23061.   DOI
2 Guengerich, F. P. 1993. Cytochrome P450 enzymes. Am. Sci. 81: 440-447.
3 Koo, L. S., C. E. Immoos, M. S. Cohen, P. J. Farmer, and P. R. Ortiz de Montellano. 2002. Enhanced electron transfer and lauric acid hydroxylation by site-directed mutagenesis of CYP119. J. Am. Chem. Soc. 124: 5684-5691.   DOI   ScienceOn
4 Ortiz de Montellano, P. R. 2008. Mechanism and role of covalent heme binding in the CYP4 family of P450 enzymes and the mammalian peroxidases. Drug Metab. Rev. 40: 405-426.   DOI   ScienceOn
5 Paine, M. J., N. S. Scrutton, A. W. Munro, A. Gutierrez, G. C. K. Roberts, and C. R. Wolf. 2005. Electron transfer partners of Cytochrome P450, pp. 115-148. In P. R. Ortiz de Montellano (ed.). Cytochrome P450: Structure, Mechanism, and Biochemistry, 3th Ed. Plenum Press, New York.
6 Park, S. Y., K. Yamane, S. Adachi, Y. Shiro, K. E. Weiss, S. A. Maves, and S. G. Sligar. 2002. Thermophilic cytochrome P450 (CYP119) from Sulfolobus solfataricus: High resolution structure and functional properties. J. Inorg. Biochem. 91: 491-501.   DOI   ScienceOn
7 Nishida, C. R. and P. R. Ortiz de Montellano. 2005. Thermophilic cytochrome P450 enzymes. Biochem. Biophys. Res. Commun. 338: 437-445.   DOI   ScienceOn
8 Kim, D., M. J. Cryle, J. J. De Voss, and P. R. Ortiz de Montellano. 2007. Functional expression and characterization of cytochrome P450 52A21 from Candida albicans. Arch. Biochem. Biophys. 464: 213-220.   DOI   ScienceOn
9 Ortiz de Montellano, P. R. 2005. Cytochrome P450: Structure, Mechanism, and Biochemistry, 3th Ed. Plenum Press, New York.
10 Hoch, U., J. R. Falck, and P. R. Ortiz de Montellano. 2000. Molecular basis for the omega-regiospecificity of the CYP4A2 and CYP4A3 fatty acid hydroxylases. J. Biol. Chem. 275: 26952-26958.
11 Chae, A. R., J. H. Shim, and Y. J. Chun. 2008. Mechanism of inhibition of human cytochrome P450 1A1 and 1B1 by piceatannol. Biomol. Ther. 16: 336-342.   DOI
12 Koo, L. S., R. A. Tschirret-Guth, W. E. Straub, P. Moenne-Loccoz, T. M. Loehr, and P. R. Ortiz de Montellano. 2000. The active site of the thermophilic CYP119 from Sulfolobus solfataricus. J. Biol. Chem. 275: 14112-14123.   DOI   ScienceOn
13 Wright, R. L., K. Harris, B. Solow, R. H. White, and P. J. Kennelly. 1996. Cloning of a potential cytochrome P450 from the archaeon Sulfolobus solfataricus. FEBS Lett. 384: 235-239.   DOI   ScienceOn
14 Yun, C. H., K. H. Kim, M. W. Calcutt, and F. P. Guengerich. 2005. Kinetic analysis of oxidation of coumarins by human cytochrome P450 2A6. J. Biol. Chem. 280: 12279-12291.
15 Puchkaev, A. V., L. S. Koo, and P. R. Ortiz de Montellano. 2003. Aromatic stacking as a determinant of the thermal stability of CYP119 from Sulfolobus solfataricus. Arch. Biochem. Biophys. 409: 52-58.   DOI   ScienceOn
16 He, X., M. J. Cryle, J. J. De Voss, and P. R. de Montellano. 2005. Calibration of the channel that determines the omegahydroxylation regiospecificity of cytochrome P4504A1: Catalytic oxidation of 12-halododecanoic acids. J. Biol. Chem. 280: 22697-22705.   DOI
17 Rabe, K. S., K. Kiko, and C. M. Niemeyer. 2008. Characterization of the peroxidase activity of CYP119, a thermostable P450 from Sulfolobus acidocaldarius. Chembiochem 9: 420-425.   DOI   ScienceOn
18 Rabe, K. S., M. Spengler, M. Erkelenz, J. Muller, V. J. Gandubert, H. Hayen, and C. M. Niemeyer. 2009. Screening for cytochrome P450 reactivity by harnessing catalase as reporter enzyme. Chembiochem 10: 751-757.   DOI   ScienceOn
19 Schenkman, J. B., H. Remmer, and R. W. Estabrook. 1967. Spectral studies of drug interaction with hepatic microsomal cytochrome P-450. Mol. Pharmacol. 3: 113-123.