Browse > Article
http://dx.doi.org/10.4014/jmb.1202.02013

Purification and Characterization of a Thermophilic Cellulase from a Novel Cellulolytic Strain, Paenibacillus barcinonensis  

Asha, Balachandrababu Malini (Department of Biotechnology, School of Life Sciences, Pondicherry University)
Revathi, Masilamani (Department of Biotechnology, School of Life Sciences, Pondicherry University)
Yadav, Amit (Department of Biotechnology, School of Life Sciences, Pondicherry University)
Sakthivel, Natarajan (Department of Biotechnology, School of Life Sciences, Pondicherry University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.11, 2012 , pp. 1501-1509 More about this Journal
Abstract
A novel bacterial strain, MG7, with high cellulase activity was isolated and identified by morphological characteristics and molecular phylogeny analysis as Paenibacillus barcinonensis. Maximum production of cellulase by MG7 was observed at pH 7.0 and $35^{\circ}C$. The enzyme was purified with a specific activity of 16.88 U/mg, the cellulase activity was observed in a zymogram, and its molecular mass (58.6 kDa) was confirmed by SDS-PAGE. The purified enzyme showed maximum activity at pH 6.0 and $65^{\circ}C$ and degraded cellulosic substrates such as carboxy methyl cellulose (CMC), Avicel, filter paper, and ${\beta}$-glucan. The enzyme showed stability with 0.5% concentration of various surfactants. The $K_m$ and $V_{max}$ of cellulase for CMC and Avicel were found to be 0.459mg/ml and 10.46mg/ml/h, and 1.01 mg/ml and 10.0 mg/ml/h, respectively. The high catalytic activity and its stability to temperature, pH, surfactants, and metal ions indicated that the cellulase enzyme by MG7 is a good candidate for biotechnological applications.
Keywords
Cellulase; Paenibacillus; kinetics; avicelase; specific activity;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Veiga, M., A. Esparis, and J. Fabregas. 1983. Isolation of cellulolytic actinomycetes from marine sediments. Appl. Environ. Microbiol. 47: 219-211.
2 Wang, C. M., C. L. Shyu, S. P. Ho, and S. H. Chiou. 2008. Characterization of a novel thermophilic, cellulose degrading bacterium Paenibacillus sp. strain B39. Lett. Appl. Microbiol. 47: 46-53.   DOI   ScienceOn
3 Weisburg, W. G., D. A. Barns Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.
4 Wood, P. J. 1980. Specificity in the interaction of direct dyes with polysaccharides. Carbohydr. Res. 85: 271-287.   DOI   ScienceOn
5 Wu, J. and L. K. Ju. 1998. Enhancing enzymatic saccharification of waste newsprint by surfactant addition. Biotechnol. Prog. 14: 649-652.   DOI   ScienceOn
6 Kotchoni, S. O., E. W. Gachomo, B. O. Omafuvbe, and O. O. Shonukan. 2006. Purification and biochemical characterization of carboxymethyl cellulase (CMCase) from a catabolite repression insensitive mutant of Bacillus pumilus. Int. J. Agric. Biol. 8: 286-292.
7 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI   ScienceOn
8 Lee, Y. J., B. K. Kim, B. H. Lee, K. I. Jo, N. K. Lee, C. H. Chung, Y. C. Lee, and J. W. Lee. 2008. Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresour. Technol. 99: 378-386.   DOI   ScienceOn
9 Lineweaver, H. and D. Burk. 1934. The determination of enzyme dissociation constant. J. Am. Chem. Soc. 56: 658-666.   DOI
10 Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin-phenol reagent. J. Biol. Chem. 193: 265-275.
11 Mandel, M. 1975. Microbial sources of cellulases. Biotechnol. Bioenerg. Symp. 5: 81-105.
12 Mawadza, C., R. Hatti-Kaul, R. Zvauya, and B. Mattiasson. 2000. Purification and characterization of cellulases produced by two Bacillus strains. J. Biotechnol. 83: 177-181.   DOI   ScienceOn
13 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
14 Morissey, J. H. 1981. Silver stain for proteins in polyacrylamide gels: A modified procedure with enhanced uniform sensitivity. Anal. Biochem. 117: 307-310.   DOI   ScienceOn
15 Ogawa, A., A. Suzumatsu, S. Takizawa, H. Kubota, K. Sawada, Y. Hakamada, et al. 2007. Endoglucanase from Paenibacillus spp. from a new clan in glycoside hydrolase family 5. J. Biotechnol. 129: 406-414.   DOI   ScienceOn
16 Ozaki, K. and S. Ito. 1991. Purification and properties of an acid endo-1,4-glucanase from Bacillus sp. KSM-330. J. Gen. Microbiol. 137: 41-48.   DOI   ScienceOn
17 Shankar, I. T. and L. Isaiarasu. 2011. Cellulase production by Bacillus pumilus EWBCM1 under varying cultural conditions. Middle East J. Sci. Res. 8: 40-45.
18 Robson, L. M. and G. H. Chambliss. 1984. Characterization of the cellulolytic activity of a Bacillus isolate. Appl. Environ. Microbiol. 47: 1039.
19 Saxena, S., J. Bahadur, and A. Varma. 1991. Production and localisation of carboxymethylcellulase, xylanase and ${\beta}$-glucosidase from Cellulomonas and Micrococcus spp. Appl. Microbiol. Biotechnol. 34: 668-670.   DOI   ScienceOn
20 Seneath, P. H. A., N. S. Mair, E. M. Sharpe, and J. G. Holt. 1986. Bergey's Manual of Systematic Bacteriology, 9 Ed. Williams and Wilkins, Baltimore,
21 Sunishkumar, R., N. Ayyadurai, P. Pandiaraja, A. V. Reddy, Y. Venkateswarlu, Om Prakash, and N. Sakthivel. 2005. Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad spectrum antifungal activity and biofertilizing traits. J. Appl. Microbiol. 98:145-154.   DOI   ScienceOn
22 Fukumori, F., T. Kudo, and K. Korikoshi. 1985. Purification and properties of a cellulase from alkalophilic Bacillus sp. No. 1139. J. Gen. Microbiol. 131: 3339-3345.
23 Gilkes, N. R., B. Henrissat, D. G. Kilburn, R. C. Miller, and R. A. Warren. 1991. Domains in microbial beta-1,4-glycanases: Sequence conservation, function, and enzyme families. Microbiol. Rev. 55: 303-315.
24 Hakamada, Y., K. Koike, T. Yoshimatsu, H. Mori, T. Kobayashio, and S. Ito. 1997. Thermostable alkaline cellulase from an alkalophilic isolate, Bacillus sp. KSM-S237. Extremophiles 1: 151-156.   DOI   ScienceOn
25 Han, S. J., Y. J. Yoo, and H. S. Kang. 1995. Characterization of bifunctional cellulase and its structural gene. The cell gene of Bacillus sp. D04 has exo and endoglucanase activity. J. Biol. Chem. 270: 26012-26019.   DOI   ScienceOn
26 Il, K. T., J. D. Han, B. S. Jeon, C. B. Yang, K. N. Kim, and M. K. Kim. 2000. Isolation from cattle manure and characterization of Bacillus licheniformis NLR1-X33 secreting cellulase. Asian Aust. J. Anim. Sci. 13: 427-431.
27 Hong, J., H. Tamaki, and S. Akiba. 2001. Cloning of a gene encoding a highly stable endo ${\beta}$1,4-glucanase from Aspergillus niger and its expression in yeast. J. Biosci. Bioeng. 92: 434-
28 Humprey, A. E., A. Moreira, W. Armiger, and D. Zabriskie. 1977. Production of single cell protein from cellulose waste. Biotechnol. Biochem. Symp. 7: 45-64.
29 Ibrahim, A. S. S. and A. I. El-diwany. 2007. Isolation and identification of new cellulases producing thermophilic bacteria from an Egyptian hot spring and some properties of the crude enzyme. Aust. J. Basic Appl. Sci. 4: 473-478.
30 Ito, S. 1997. Alkaline cellulases from alkaliphilic Bacillus: Enzymatic properties, genetics, and application to detergents. Extremophiles 1: 61-66.   DOI   ScienceOn
31 Ito, S., T. Kobayashi, K. Ara, K. Ozaki, S. Kawai, and Y. Hatada. 1998. Alkaline detergent enzymes from alkaliphiles: Enzymatic properties, genetics, and structures. Extremophiles 2: 185-190.   DOI   ScienceOn
32 Kang, H. J., K. Uegaki, and H. Fukada. 2007. Improvement of the enzymatic activity of the hyperthermophilic cellulase from Pyrococcus horikoshi. Extremophiles 11: 251-256.   DOI   ScienceOn
33 Kim, B. K., B. H. Lee, Y. J. Lee, I. H. Jin, C. H. Chung, and J. W. Lee. 2009. Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microb. Technol. 44: 411-416.   DOI   ScienceOn
34 Ash, C., F. G. Priest, and M. D. Collins. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of new genus Paenibacillus. Antonie Van Leeuwenhoek 64: 253-260.
35 Kim, C. H. 1995. Characterization and substrate specificity of an endo-${\beta}$-1,4-D-glucanase I (avicelase) from an extracellular multienzyme complex of Bacillus circulans. Appl. Environ. Microbiol. 61: 959-965.
36 Kim, J. Y., S. H. Hur, and J. H. Hong. 2005. Purification and characterization of an alkaline cellulase from a newly isolated alkalophilic Bacillus sp. HSH-810. Biotechnol. Lett. 27: 313-316.   DOI   ScienceOn
37 Adsul, M. G., K. B. Bastawde, A. J. Varma, and D. V. Gokhale. 2007. Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulose production. Bioresour. Technol. 98: 1467-1473.   DOI   ScienceOn
38 Bailey, M. J., P. Biely, and K. Poutanen. 1992. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23: 257-270.   DOI   ScienceOn
39 Castanon, M. and C. R. Wilke. 1981. Effects of the surfactant Tween 80 on enzymatic hydrolysis of newspaper. Biotechnol. Bioeng. 23: 1365-1372.   DOI
40 Choudhary, N., P. P. Gray, and N. W. Dunn. 1980. Reducing sugar accumulation from alkali pretreated sugar cane bagasse using Cellulomonas. Eur. J. Appl. Microbiol. 11: 50-54.   DOI   ScienceOn
41 Deka, D., P. Bhargavi, A. Sharma, D. Goyal, M. Jawed, and A. Goyal. 2011. Enhancement of cellulase activity from a new strain of Bacillus subtilis by medium optimization and analysis with various cellulosic substrate. Enz. Res. 2011: 151656
42 Fujimoto, N., T. Kosaka, T. Nakao, and M. Yamada. 2011. Bacillus licheniformis bearing a high cellulose-degrading activity, which was isolated as a heat-resistant and micro-aerophilic microorganism from bovine rumen. Open Biotechnol. J. 5: 7-13.   DOI
43 Eckert, K. and E. Schneider. 2003. A thermoacidophilic endoglucanase(CelB) from Alicyclobacillus acidocaldarius displays high sequence similarity to arabinofuranosidases belonging to family 51 of glycoside hydrolases. Eur. J. Biochem. 270: 3593- 3602.   DOI   ScienceOn
44 Fan, L. T., Y. Lee, and M. Z. Gharpura. 1982. The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis. Adv. Biochem. Eng. 23: 157-187.