• Title/Summary/Keyword: thermophilic bacterium

Search Result 54, Processing Time 0.018 seconds

Electricity Generation in Cellulose-Fed Microbial Fuel Cell Using Thermophilic Bacterium, Bacillus sp. WK21

  • Kaoplod, Watcharasorn;Chaijak, Pimprapa
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.122-125
    • /
    • 2022
  • The cellulose-fed microbial fuel cell (MFC) is a biotechnological process that directly converts lignocellulosic materials to electricity without combustion. In this study, the cellulose-fed, MFC-integrated thermophilic bacterium, Bacillus sp. WK21, with endoglucanase and exoglucanase activities of 1.25 ± 0.08 U/ml and 0.95 ± 0.02 U/ml, respectively, was used to generate electricity at high temperatures. Maximal current densities of 485, 420, and 472 mA/m2 were achieved when carboxymethyl cellulose, avicel cellulose, and cellulose powder, respectively, were used as substrates. Their respective maximal power was 94.09, 70.56, and 89.30 mW/m3. This study demonstrates the value of the novel use of a cellulase-producing thermophilic bacterium as a biocatalyst for electricity generation in a cellulose-fed MFC.

Isolation and Characterization of an Extremely Thermophilic Sulfur-metabolizing Bacterium from a Deep-sea Hydrothermal Vent System

  • Kwak, Yi-Seong;Kobayashi, Tetsuo;Akiba, Teruhiko;Horikoshi, Koki;Kim, Young-Bae
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.36-40
    • /
    • 1994
  • A water sample was taken from a black smoker chimney of a deep-sea hydrothermal vent by using an unmanned submersible "Dolphin 3K". The temperature of the hydrothermal fluid from the black smoker was $276^{\circ}C$. After isolation by repeated serial dilutions, An extremely thermophilic bacterial strain was selected. The strain designated as DT1331, was an anaerobic, non-motile, coccoid shaped bacterium with about 0.5 to $1.0\;\mu\textrm{m}$ in diameter. The strain DT1331 could grow up to $93^{\circ}C$, but the optimum temperature of this strain was $80^{\circ}C$. The growth occurred in the pH range of 4.5 to 8.5 and the optimum pH was 6.0. The strain DT1331 required 1% to 5% NaCl for growth and cell lysis was observed below 1% NaCl concentration. The bacterium could grow on polypeptides such as tryptone, peptone, soytone and on proteins such as casein or gelatin. However, no growth was observed on single amino acids, sugar and organic acids. Hydrogen gas was detected slightly during growth. This bacterium obligately required elemental sulfur and hydrogen sulfide gas was produced during growth.

  • PDF

Effects of Iron-Reducing Bacteria on Carbon Steel Corrosion Induced by Thermophilic Sulfate-Reducing Consortia

  • Valencia-Cantero, Eduardo;Pena-Cabriales, Juan Jose
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.280-286
    • /
    • 2014
  • Four thermophilic bacterial species, including the iron-reducing bacterium Geobacillus sp. G2 and the sulfate-reducing bacterium Desulfotomaculum sp. SRB-M, were employed to integrate a bacterial consortium. A second consortium was integrated with the same bacteria, except for Geobacillus sp. G2. Carbon steel coupons were subjected to batch cultures of both consortia. The corrosion induced by the complete consortium was 10 times higher than that induced by the second consortium, and the ferrous ion concentration was consistently higher in iron-reducing consortia. Scanning electronic microscopy analysis of the carbon steel surface showed mineral films colonized by bacteria. The complete consortium caused profuse fracturing of the mineral film, whereas the non-iron-reducing consortium did not generate fractures. These data show that the iron-reducing activity of Geobacillus sp. G2 promotes fracturing of mineral films, thereby increasing steel corrosion.

Characterization of the Thermophilic Bacterium Geobacillus sp. Strain GWE1 Isolated from a Sterilization Oven

  • Correa-Llanten, Daniela;Larrain-Linton, Juanita;Munoz, Patricio A.;Castro, Miguel;Boehmwald, Freddy;Blamey, Jenny M.
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.3
    • /
    • pp.278-283
    • /
    • 2013
  • A gram-positive, rod-shaped, spore-forming, motile thermophilic bacterium was isolated from a sterilization oven. The microorganism GWE1, formally named Geobacillus wiegelii identified as a member of the genus Geobacillus. GWE1 grew under aerobic conditions of between $60-80^{\circ}C$ (optimum $670^{\circ}C$), in a pH range of 3.0-8.0 (optimum $pH^{70^{\circ}C}$ 5.8), and between 0 and 2 M NaCl (optimum 0.3 M). The membrane polar lipids were dominated by branched saturated fatty acids, which included as the major constituents; iso-15:0 (13.3%), 16:1(${\omega}7$) (12.8%), 16:0 (28.5%), iso-17:0 (13.5%) and anteiso-17:0 (12.3%). The DNA G+C content was 47.2 mol% (determined by HPLC). The 16S rRNA gene sequence of GWE1 showed a high similarity with Geobacillus caldoxylosilyticus (97%). However, the level of DNA-DNA relatedness was only 58%. These data suggest that GWE1 is probably a novel specie of the genus Geobacillus.

Production and Characterization of Crystalline Cellulose-Degrading Cellulase Components from a Thermophilic and Moderately Alkalophilic Bacterium

  • Kim, Dong-Soo;Kim, Cheorl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.1
    • /
    • pp.7-13
    • /
    • 1992
  • A moderately thermophilic, alkalophlic and powerful crystalline cellulose-digesting bacterium, Bacillus K-12, was isolated from filter paper wastes and found to be similar to Bacillus circulans or Bacillus pumilis, except for its ability to grow at a moderately high pH and temperature. The isolate grew at a pH ranging from 6 to 10 and at a temperature ranging from 35 to $65^{\circ}C$ and produced a large amount of cellulase components containing avicelase, xylanase, CMCase, and FPase when grown in avicel medium for 5 to 7 days at $50^{\circ}C$. The crude enzyme preparation from the culture broth hydrolyzed xylan, raw starch, pullulan and ${\beta}-1,3$ glucan such as laminarin. Furthermore, the enzyme hydrolyzed crystalline cellulose to cellobiose and glucose and had a broad pH activity curve (pH 6~9). The enzyme was stable up to $70^{\circ}C$.

  • PDF

Metabolic Engineering of the Thermophilic Bacteria, Bacillus stearothermophilus, for Ethanol Production

  • Jo, Gwang-Myeong;Ingram, Lonnie O.
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.56-59
    • /
    • 2000
  • Thermophilic bacterium, Bacillus stearothermophilus NUB3621, was engineered to produce ethanol from glucose by introducing cloned thermostable pyruvate decarboxylase and alcohol dehydrogenase genes. A novel promoter sequence was screened and used for the enhancement of these two enzymes. Successful redirection of metabolic flux into ethanol was obtained. In addition, gene expression profiling using Bacillus subtilis DNA microarray was analyzed to overcome the intrinsic low glucose utilization of B.stearothermophilus. Many known and unknown genes were identified to be up or down regulated under glucose-containing media.

  • PDF

Isolation and Characterization of Endocellulase-Free Multienzyme Complex from Newly Isolated Thermoanaerobacterium thermosaccharolyticum Strain NOI-1

  • Chimtong, Suphavadee;Tachaapaikoon, Chakrit;Pason, Patthra;Kyu, Khin Lay;Kosugi, Akihiko;Mori, Yutaka;Ratanakhanokchai, Khanok
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.3
    • /
    • pp.284-292
    • /
    • 2011
  • An endocellulase-free multienzyme complex was produced by a thermophilic anaerobic bacterium, Thermoanaerobacterium thermosaccharolyticum strain NOI-1, when grown on xylan. The temperature and pH optima for growth were $60^{\circ}C$ and 6.0, respectively. The bacterial cells were found to adhere to insoluble xylan and Avicel. A scanning electron microscopy analysis showed the adhesion of xylan to the cells. An endocellulase-free multienzyme complex was isolated from the crude enzyme of strain NOI-1 by affinity purification on cellulose and Sephacryl S-300 gel filtration. The molecular mass of the multienzyme complex was estimated to be about 1,200 kDa. The multienzyme complex showed one protein on native PAGE, one xylanase on a native zymogram, 21 proteins on SDS-PAGE, and 5 xylanases on a SDS zymogram. The multienzyme complex consisted of xylanase, ${\beta}$-xylosidase, ${\alpha}$-L-arabinofuranosidase, ${\beta}$-glucosidase, and cellobiohydrolase. The multienzyme complex was effective in hydrolyzing xylan and corn hulls. This is the first report of an endocellulase-free multienzyme complex produced by a thermophilic anaerobic bacterium, T. thermosaccharolyticum strain NOI-1.

Culture-Independent Analysis of Microbial Succession During Composting of Swine Slurry and Mushroom Cultural Wastes

  • Cho, Kye-Man;Lee, Sun-Mi;Math, Renukaradhya K.;Islam, Shah Md. Asraful;Kambiranda, Devaiah M.;Kim, Jong-Min;Yun, Myoung-Geun;Cho, Ji-Joong;Kim, Jong-Ok;Lee, Young-Han;Kim, Hoon;Yun, Han-Dae
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1874-1883
    • /
    • 2008
  • Bacterial diversity and the composition of individual communities during the composting process of swine and mushroom cultural wastes in a field-scale composter (Hazaka system) were examined using a PCR-based approach. The composting process was divided into six stages based on recorded temperature changes. Phylogenetic analysis of eighty 16S rRNA sequences from uncultured composting bacterial groups revealed the presence of representatives from three divisions, including plant pathogenic bacteria, high-molecule-degrading bacteria and spore-forming bacteria. The plant pathogen A. tumefaciens gradually decreased in abundance during the composting process and eventually disappeared during the thermophilic and cooling stage. A bacterium homologous to Bacillus humi first appeared at the early thermophilic stage and was established at the intermediate thermophilic, post-thermophilic, and cooling stages. It was not possible to isolate the B. humi during any of the stages using general culture techniques.

Discovery of D-Stereospecific Dipeptidase from Thermophilic Bacillus sp. BCS-l and Its Application for Synthesis of D-Amino Acid-Containing Peptide

  • Baek, Dae-Heoun;Kwon, Seok-Joon;Park, Jin-Seo;Lee, Seung-Goo;Mheen, Tae-Ick;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.646-649
    • /
    • 1999
  • A thermophilic bacterium producing D-stereospecific dipeptidase was isolated from Korean soil samples. The enzyme hydrolyzed the peptide bond between D-alanyl-D-alanine (D-Ala-D-Ala). The isolated bacterial strain was rod shaped, gram-positive, motile, and formed an endospore. Morphological and physiological characteristics suggested this microorganism a thermophilic Bacillus species, and was named as Bacillus sp. BCS-l. The production of D-stereospecific dipeptidase was growth-associated and optimal at $55^{\circ}C$. The enzyme was applied for the synthesis of D-amino acid-containing peptide, N-benzyloxycarbonyl-L-aspartyl-D-alanine benzyl ester (Z-L-Asp-D-AlaOBzl), as a model reaction. A thermodynamically controlled synthesis of Z-L-Asp-D-AlaOBzl was achieved in an organic solvent.

  • PDF

Isolation and Characterization of a Thermophilic Bacillus sp. producing a Thermostable $\alpha$-glucosidase (내열성$\alpha$-glucosidase를 생산하는 호열성 Bacillus sp. 균주의 분리 및 특성)

  • 이용억
    • Journal of Life Science
    • /
    • v.8 no.4
    • /
    • pp.387-394
    • /
    • 1998
  • A thermophilic bacterium (strain DG0303) producing a thermostable $\alpha$-glucosidase was isolated from manure and identified as Bacillus sp. Strain DG0303 produced high level of $\alpha$-glucosidase compared with other thermophilic Bacillus strains. The cellular protein patterns were also compared with other Bacillus strains by sodium dodecyl sulfatepolyacrylamide gel electrophoresis(SDS-PAGE). On the basis of 16S rDNA analysis the Bacillus sp. DG0303 was found to be a member of Bacillus rDNA group 5. The optimum temperature for growth was 65$\circ$C and no growth was obtained at 40$\circ$C or 75$\circ$C. The optimum pH for growth was 5.5 to 8.5. $\alpha$-glucosidase activity was produced during growth and most activity was detected in the culture supernatant. The $\alpha$-glucosidase production was constitutive in the absence of carbohydrates. High level of enzyme activity was detected when the culture was grown on medium containing starch. Addition of glucose resulted in the repression of the $\alpha$-glucosidase production. The optimum pH and tempoerature for enzyme activity were pH 5.0 and 65$\circ$C, respectively. When analyzed by zymogram, the culture supernatant showed a single $\alpha$-glucosidase band with a molecular weight of approximately 60,000.

  • PDF