Browse > Article
http://dx.doi.org/10.4014/jmb.0800.200

Culture-Independent Analysis of Microbial Succession During Composting of Swine Slurry and Mushroom Cultural Wastes  

Cho, Kye-Man (Research institute of Agriculture and Life Science)
Lee, Sun-Mi (Division of Applied Life Science (BK21 Program), Gyeongsang National University)
Math, Renukaradhya K. (Division of Applied Life Science (BK21 Program), Gyeongsang National University)
Islam, Shah Md. Asraful (Division of Applied Life Science (BK21 Program), Gyeongsang National University)
Kambiranda, Devaiah M. (Division of Applied Life Science (BK21 Program), Gyeongsang National University)
Kim, Jong-Min (Division of Applied Life Science (BK21 Program), Gyeongsang National University)
Yun, Myoung-Geun (Division of Applied Life Science (BK21 Program), Gyeongsang National University)
Cho, Ji-Joong (Division of Applied Life Science (BK21 Program), Gyeongsang National University)
Kim, Jong-Ok (Division of Applied Life Science (BK21 Program), Gyeongsang National University)
Lee, Young-Han (Division of Plant Environmental Research, Gyeongsangnam-do Agricultural Research and Extension Service)
Kim, Hoon (Department of Bio-environmental Chemistry, Sunchon National University)
Yun, Han-Dae (Research institute of Agriculture and Life Science)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.12, 2008 , pp. 1874-1883 More about this Journal
Abstract
Bacterial diversity and the composition of individual communities during the composting process of swine and mushroom cultural wastes in a field-scale composter (Hazaka system) were examined using a PCR-based approach. The composting process was divided into six stages based on recorded temperature changes. Phylogenetic analysis of eighty 16S rRNA sequences from uncultured composting bacterial groups revealed the presence of representatives from three divisions, including plant pathogenic bacteria, high-molecule-degrading bacteria and spore-forming bacteria. The plant pathogen A. tumefaciens gradually decreased in abundance during the composting process and eventually disappeared during the thermophilic and cooling stage. A bacterium homologous to Bacillus humi first appeared at the early thermophilic stage and was established at the intermediate thermophilic, post-thermophilic, and cooling stages. It was not possible to isolate the B. humi during any of the stages using general culture techniques.
Keywords
Field-scale composter; swine slurry and mushroom cultural wastes; uncultivable bacterium; bacterial diversity; 16S rRNA gene;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
1 Adams, J. D. W. and L. E. Frostick. 2008. Investigating microbial activities in compost using mushroom (Agaricus bisporus) cultivation as an experimental system. Bioresour. Technol. 99: 1097-1102   DOI   ScienceOn
2 Bailey, K. L. and L. G. Lazarovits. 2003. Suppressing soil-borne diseases with residue management and organic amendments. Soil Tillage Res. 72: 169-180   DOI   ScienceOn
3 Beffa, T., M. Blanc, P. F. Lyon, G. Vogt, M. Marchiani, J. L. Fischer, and M. Aragno. 1996. Isolation of Thermus strains from hot composts (60 to 80oC). Appl. Environ. Microbiol. 62: 1723-1727
4 Blanc, M., L. Marilley, T. Beffa, and M. Aragno. 1999. Thermophilic bacterial communities in hot composts as revealed by most probable number counts and molecular (16S rRNA) methods. FEMS Microbiol. Ecol. 28: 141-149   DOI   ScienceOn
5 Heyrman, J., M. Rodriguez-Diaz, J. Devos, A. Felske, N. A. Logan, and P. De Vos. 2005. Bacillus arenosi sp. nov., Bacillus arvi sp. nov and Bacillus humi sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 55: 111-117   DOI   ScienceOn
6 Juteau, P., D. Tremblay, R. Villemur, J. G. Bisaillon, and R. Beaudet. 2005. Analysis of the bacterial community inhabiting an aerobic thermophilic sequencing batch reactor (AT-SBR) treating swine waste. Appl. Microbiol. Biotechnol. 66: 115-122   DOI   ScienceOn
7 Lee, H. J. and J. Kim. 2000. Multiplex PCR-based detection and identification of Leuconostoc species. FEMS Microbiol. Lett. 193: 243-247   DOI   ScienceOn
8 Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. Jr. Parker, P. R. Saxman, J. M. Stredwick, et al. 2000. The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 28: 173-174   DOI   ScienceOn
9 Ntougias, S., G. I. Zervakis, N. Kavroulakis, C. Ehaliotis, and K. K. Papdopoulou. 2004. Bacterial diversity in spent mushroom compost assessed by amplified rDNA restriction analysis and sequencing of cultivated isolates. System. Appl. Microbiol. 27: 7416-754
10 Tompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680   DOI   ScienceOn
11 Dambreville, C., S. Hallet, C. Nguyen, T. Morvan, J. C. Germon, and L. Philippot. 2006. Structure and activity of the denitrifying community in a maize-cropped field fertilized with composted swine manure or ammonium nitrate. FEMS Microbiol. Ecol. 56: 119-131   DOI   ScienceOn
12 Wintzingerode, F., U. B. Gobel, and E. Stackebrandt. 1997. Determination of microbial diversity in environmental samples: Pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21: 213-229   DOI   ScienceOn
13 Saito, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
14 Fracchia, L., A. B. Dohrmann, M. G. Martinotti, and C. C. Tebbe. 2006. Bacterial diversity in a finished compost and vermicompost: Differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes. Appl. Microbiol. Biotechnol. 71: 942-952   DOI   ScienceOn
15 Dees, P. M. and W. C. Ghiorse. 2001. Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolated and extracted DNA. FEMS Microbiol. Ecol. 35: 207-216   DOI   ScienceOn
16 Tang, J. C., T. Kanamori, Y. Inoue, T. Yasuta, S. Yoshida, and A. Katayama. 2004. Changes in the microbial community structure during thermophilic composting of manure as detected by the quinine profile method. Process Biochem. 39: 1999-2006   DOI
17 Nakasaki, K., S. Hiraolka, and H. Nagata. 1998. A new operation for producing disease-suppressive compost from grass clippings. Appl. Environ. Microbiol. 64: 4015-4020
18 Ten, L. N., G. M. Liu, W. T. Kim, Z. Aslam, and S. T. Lee. 2006. Sphingobacterium composti sp. nov., a novel DNase-producing bacterium isolated from compost. J. Microbiol. Biotechnol. 16: 1728-1733   과학기술학회마을
19 Dumontet, S., H. Dinel, and S. B. Baloda. 1999. Pathogen reduction in sewage sludge by composting and other biological treatments: A review. Biol. Agr. Hort. 16: 409-430   DOI   ScienceOn
20 Lemunier, M., C. Francou, S. Rousseaux, R. Houot, P. Dantigny, P. Piveteau, and J. Guzzo. 2005. Long-term survival of pathogenic and sanitation indicator bacteria in experimental biowaste composts. Appl. Environ. Microbiol. 71: 5779-5786   DOI   ScienceOn
21 Michel, F. C., T. J. Jr. Marsh, and C. A. Reddy. 2002. Bacterial community structure during yard trimmings composting, pp. 25-42. In H. Insam, S. Riddech, and S. Klammer (eds.), Microbiology of Composting. Springer, Berlin, Heidelberg, NY
22 Ryckeboer, J., J. Mergaert, K. Vaes, S. Klammer, D. De Clercq, J. Coosemans, H. Insam, and J. Swings. 2003. A survey of bacteria and fungi occurring during composting and self-heating processes. Ann. Microbiol. 53: 349-410
23 McGinnis, S. and T. L. Madden. 2004. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 32: 20-25
24 Bollen, G. J. 1985. The fate of plant pathogens during composting of crop residues, pp. 282-290. In J. K. R. Gasser (ed.), Composting of Agricultural and Other Wastes. Elsevier Applied Science, London
25 Tiquia, S. M., J. M. Ichida, H. M. Keener, D. L. Elwell, E. H. Jr. Burtt, and F. C. Jr. Michel. 2005. Bacterial community profiles on feathers during composting as determined by terminal restriction fragment length polymorphism analysis of 16S rDNA genes. Appl. Microbiol. Biotechnol. 67: 412-419   DOI   ScienceOn
26 Epstein, E. 1997. Microbiology, pp. 53-76. In E. Epstein (ed.), The Science of Composting. CRC Press, Washingtion, DC.
27 Alfreider, A., S. Peters, C. C. Tebbe, A. Rangger, and H. Insam. 2002. Microbial community dynamics during composting of organic matter as determined by 16S ribosomal DNA analysis. Compost Sci. Util. 10: 303-312   DOI
28 Peters, S., S. Koschinsky, F. Schwieger, and C. C. Tebbe. 2000. Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphismbased genetic profiles of small-subunit rRNA genes. Appl. Environ. Microbiol. 66: 930-936   DOI   ScienceOn
29 Shuang, J. L., C. H. Liu, S. Q. An, Y. Xing, G. Q. Zheng, and Y. F. Shen. 2006. Some universal characteristics of intertidal bacterial diversity as revealed by 16S rRNA gene-based PCR clone analysis. J. Microbiol. Biotechnol. 16: 1882-1889   과학기술학회마을
30 Larney, F. J. and X. Hao. 2007. A review of composting as a management alternative for beef cattle feedlot manure in southern Alberta, Canada. Bioresour. Technol. 98: 3221-3227   DOI   ScienceOn
31 Pace, N. R., D. A. Stahl, D. J. Lane, and G.. J. Olsen. 1986. The analysis of natural microbial population by ribosomal RNA sequences. Adv. Microb. Ecol. 9: 1-55
32 Takaku, H., S. Kodaira, A. Kimoto, M. Nashimoto, and M. Takagi. 2006. Microbial communities in the garbage composting with rice hull as an amendment revealed by culture-dependent and -independent approaches. J. Biosci. Bioeng. 101: 42-50   DOI   ScienceOn
33 Miller, F. C. 1993. Composting as a process based on the control of ecologically selective factors., pp. 515-539. In F. Blaine and J. Metting (eds.), Soil Microbial Ecology - Applications in Agricultural and Environmental Management. Marcel Dekker, NY
34 Cho, S. J., K. M. Cho, E. C. Shin, W. J. Lim, S. Y. Hong, B. R. Choi, et al. 2006. 16S rDNA analysis of bacterial diversity in three fractions of cow rumen. J. Microbiol. Biotechnol. 16: 92-101   과학기술학회마을
35 Cahyani, V. R., A. Watanabe, K. Matsuya, S. Asakawa, and M. Kimura. 2002. Succession of microbiota estimated by phospholipids fatty acid analysis and changes in organic constituents during the composting process of rice straw. Soil Sci. Plant Nutr. 48: 735-743   DOI   ScienceOn
36 Tiquia, S. M. and N. F. Y. Tam. 2000. Co-composting of spent swine litter and sludge with forced aeration. Bioresour. Technol. 72: 1-7   DOI
37 Franke-Whittle, I. H., S. H. Klammer, and H. Insam. 2005. Design and application of an oligonucleotide microarray for the investigation of compost microbial communities. J. Microbiol. Methods 62: 37-56   DOI   ScienceOn