Browse > Article
http://dx.doi.org/10.48022/mbl.2201.01001

Electricity Generation in Cellulose-Fed Microbial Fuel Cell Using Thermophilic Bacterium, Bacillus sp. WK21  

Kaoplod, Watcharasorn (Department of Biology, Faculty of Science, Thaksin University)
Chaijak, Pimprapa (Microbial Fuel Cell & Bioremediation Laboratory, Faculty of Science, Thaksin University)
Publication Information
Microbiology and Biotechnology Letters / v.50, no.1, 2022 , pp. 122-125 More about this Journal
Abstract
The cellulose-fed microbial fuel cell (MFC) is a biotechnological process that directly converts lignocellulosic materials to electricity without combustion. In this study, the cellulose-fed, MFC-integrated thermophilic bacterium, Bacillus sp. WK21, with endoglucanase and exoglucanase activities of 1.25 ± 0.08 U/ml and 0.95 ± 0.02 U/ml, respectively, was used to generate electricity at high temperatures. Maximal current densities of 485, 420, and 472 mA/m2 were achieved when carboxymethyl cellulose, avicel cellulose, and cellulose powder, respectively, were used as substrates. Their respective maximal power was 94.09, 70.56, and 89.30 mW/m3. This study demonstrates the value of the novel use of a cellulase-producing thermophilic bacterium as a biocatalyst for electricity generation in a cellulose-fed MFC.
Keywords
Thermotolerant bacteria; cellulase; cellulose; microbial fuel cell; electricity generation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Thulasinathan B, Jayabalan T, Arumugam N, Kulanthaisamy MR, Kim P, Govarthanan M, et al. 2022. Wastewater sunstrates in microbial fuel cell system for carbon-neutral bioelectricity generation: An overview. Fuel 317: 123369.   DOI
2 Hajiabadi S, Mashreghi M, Bahrami AR, Ghazvini K, Matin MM. 2020. Isolation and molecular identification of cellulolytic bacteria from Dig Rostam hot spring and study of their cellulase activity. Biocell 44: 63-71.   DOI
3 Agarwal AK. 2007. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion energies. Prog. Energy. Combust. Sci. 33: 233-271.   DOI
4 Robak K, Balcerek M. 2018. Review of second generation bioethanol production from residual biomass. Food Technol. Biotechnol. 56: 174-187.
5 Bayer EA, Chanzy H, Lamed R, Shoham Y. 1998. Cellulose, cellulase, and cellulosomes. Curr. Opin. Struct. Biol. 8: 548-557.   DOI
6 Toczylowska-Maminski R, Szymona K, Krol P, Gliniewicz K, Pielech-Przybylska K, Kloch M, et al. 2018. Evolving microbial communities in cellulose-fed microbial fuel cell. Energies 11: 124.   DOI
7 Rismani-Yazdi H, Christy AD, Dehority BA, Morrison M, Yu Z, Tuovinen OH. 2007. Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol. Bioeng. 97: 1398-1407.   DOI
8 Toczylowska-Maminski R, Szymona K, Madaj H, Wong WZ, Bala A, Brutkowski W, et al. 2015. Cellulolytic and electrogenic activity of Enterobacter cloacae in mediatorless microbial fuel cell. Appl. Energy 160: 88-93.   DOI
9 Weng JK, Li X, Bonawitz ND, Chapple C. 2008. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr. Opin. Biotechnol. 19: 166-172.   DOI
10 Dey N, Vickram S, Thanigaivel S, Subbaiya R, Kim W, Karmegam N, et al. 2022. Nanomaterials for transforming barrier properties of lignocellulosic biomass towards potential applications - A review. Fuel 316: 123444.   DOI
11 Hobdey SE, Donohoe BS, Brunecky R, Himmel ME, Bomble YJ. 2015. Direct microbial conversion of biomass to advanced biofuels, pp. 111-127. 1st Ed. Elsevier B.V., Golden, Colorado.
12 Taylor MP, Eley KL, Martin S, Tuffin MI, Burton SG, Cowan DA. 2009. Thermophilic ethanologenesis: Future prospects for second-generation bioethanol production. Trends Biotechnol. 27: 398-405.   DOI
13 Gupta GN, Srivastava S, Khare SK, Prakash V. 2014. Extremophiles: An overview of microorganism from extreme environment. Int. J. Agric. Environ. Biotechnol. 7: 371-380.   DOI
14 Shiratori H, Sasaya K, Ohiwa H, Ikeno H, Ayame S, Kataoka N, et al. 2009. Clostridium clariflavum sp. nov. and Clostricium caenicola sp. nov., moderately thermophilic, cellulose-/cellobiose-digesting bacteria isolated from methanogenic sludge. Int. J. Syst. Evol. Microbiol. 59: 1764-1770.   DOI
15 Almatouq A, Babatunde AO, Khajah M, Webster G, Alfodari M. 2020. Microbial community structure of anode electrodes in microbial fuel cells and microbial electrolysis cells. J. Water Process Eng. 34: 101140.   DOI
16 Junior FLS, Dias ACF, Fasanella CC, Taketani RG, Lima AOS, Melo IS, et al. 2013. Endo- and exoglucanase activities in bacteria from mangrove sediment. Braz. J. Microbiol. 44: 969-976.   DOI
17 Parkash A, Aziz S, Soomro SA. 2015. Impact of salt concentration on electricity generation using hostel sludge based dual chambered microbial fuel cell. J. Bioprocess. Biotech. 5: 1000252.
18 Ganesan M, Mathivani Vinayakamoorthy R, Thankappan S, Muniraj I, Uthandi S. 2020. Thermotolerant glycosyl hydrolases-producing Bacillus aerius CMCPS1 and its saccharification efficiency on HCR-laccase (LccH)-pretreated corncob biomass. Biotechnol. Biofuels 13: 124.   DOI
19 Kazeem MO, Shah UKM, Baharuddin AS, Rahman AA. 2017. Prospecting agro-waste cocktail: supplementation for cellulase production by a newly isolated thermophilic Bacillus licheniformis 2D55. Appl. Biochem. Biotechnol. 182: 1318-1340.   DOI
20 Padiha IQM, Carvalho LCT, Dias PVS, Grisi TCSL, Honorato da Silva FL, Santos SFM, et al. 2015. Production and characterization of thermophilic carboxymethyl cellulase synthesized by Bacillus sp. growing on sugarcane bagasse in submerged fermentation. Braz. J. Chem. Eng. 32: 35-42.   DOI
21 Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE. 2009. Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl. Environ. Microbiol. 75: 3673-3678.   DOI
22 Zhao C, Chu Y, Li Y, Yang C, Chen Y, Wang X, et al. 2017. High-throughput pyrosequencing used for the discovery of a novel cellulase from a thermophilic cellulose-degrading microbial consortium. Biotechnol. Lett. 39: 123-131.   DOI
23 Islam F, Roy N. 2018. Screening, purification and characterization of cellulase from cellulase producing bacteria in molasses. BMC Res. Notes 11: 445.   DOI
24 You S, Zhao Q, Zhang J, Jiang J, Zhao S. 2006. A microbial fuel cell using permanganate as the cathodic electron acceptor. J. Power Sourc. 162: 1409-1415.   DOI
25 Meng F, Ma L, Ji S, Yang W, Cao B. 2014. Isolation and characterization of Bacillus subtilis strain BY-3, a thermophilic and efficient cellulase-producing bacterium on untreated plant biomass. Lett. Appl. Microbiol. 59: 306-312.   DOI
26 Wang X, Feng Y, Wang H, Qu Y, Yu Y, Ren N, et al. 2009. Bioaugmentation for electricity from corn stover biomass using microbial fuel cells. Environ. Sci. Technol. 43: 6088-6093.   DOI
27 Ishii S, Shimoyama T, Hotta Y, Watanabe K. 2008. Characterization of filamentous biofilm community established in a cellulose-fed microbial fuel cell. BMC Microbiol. 8: 6.   DOI