• 제목/요약/키워드: thermoelectric power

검색결과 352건 처리시간 0.034초

열전모듈의 발전특성을 이용한 전기저항 변화 측정 (Measuring method of electric resistance using thermoelectric properties of module)

  • 우병철;이희웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1332-1334
    • /
    • 2002
  • Thermoelectric generation is the direct energy conversion method from heat th electric power. The conversion method is a very useful utilization of waste energy because of its possibility using a thermal energy below $150^{\circ}C$ This research objective is th establish the thermoelectric technology on a optimum system design method and efficiency, and cost effective thermoelectric element in order to extract the maximum electric power from a wasted hot water. This paper is considered in manufacturing a thermoelectric generator and measuring of electric resistance of module a thermoelectric modules. It was found that the electric resistance of thermoelectric modules was defined as a temperature functions. The relationship between electric resistance and temperature characteristics can be a analogized as function of electric current.

  • PDF

열전냉각소자와 열전발전소자의 발전특성 (Characteristics of electric power for thermoelectric cooling & generating module)

  • 우병철;이희웅;이동윤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.448-451
    • /
    • 2000
  • The purpose of this study is to manufacture and test a thermoelectric generator which converts unused energy from close-at-hand sources, such as garbage incineration heat and industrial exhaust, to electricity. A manufacturing process and the properties of a thermoelectric generator are discussed before simulating the thermal stress and thermal properties of a thermoelectric module located between an aluminum tube and alumina plate. We can design the thermoelectric modules having the good properties of thermoelectric generation. Resistivity of thermoelectric module for thermoelectric generation consisting of 62 cells was 0.15-0.4$\Omega$ Developed thermoelectric modules can be expected th have better properties than thermoelectric cooling modules above $70^{\circ}C$ in temperature difference between hot and cold ends.

  • PDF

태양열 온수 시스템에 적용 가능한 100 W급 열전발전 모듈 성능에 관한 연구 (A Study on the Performance of 100 W Thermoelectric Power Generation Module for Solar Hot Water System)

  • 서호영;이경원;윤정훈;이순환
    • 한국태양에너지학회 논문집
    • /
    • 제39권1호
    • /
    • pp.21-32
    • /
    • 2019
  • Solar hot water system produces hot water using solar energy. If it is not used effectively, overheating occurs during the summer. Therefore, a lot of research is being done to solve this. This study develops thermoelectric power module applicable to solar hot water system. A thermoelectric material can directly convert thermal energy into electrical energy without additional power generation devices. If there is a temperature difference between high and low temperature, it generate power by Seebeck effect. The thermoelectric module generates electricity using temperature differences through the heat exchange of hot and cold water. The water used for cooling is heated and stored as hot water as it passes through the module. It can prevent overheating of Solar hot water system while producing power. The thermoelectric module consists of one absorption and two radiation part. There path is designed in the form of a water jacket. As a result, a temperature of the absorption part was $134.2^{\circ}C$ and the radiation part was $48.6^{\circ}C$. The temperature difference between the absorption and radiation was $85.6^{\circ}C$. Also, The Thermoelectric module produced about 122 W of irradiation at $708W/m^2$. At this time, power generation efficiency was 2.62% and hot water conversion efficiency was 62.46%.

DMFC 시스템에 사용한 열전 변환기에 관한 연구 (A Study on Thermoelectric Converter Using DMFC (Direct Methanol Fuel Cell) System)

  • 장경량;문채주;장영학;정의헌;김태곤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.92-94
    • /
    • 2007
  • This article describes a thermoelectric converter, which is powered by thermoelectric (TE) power modules. This system uses TE devices that directly convert heat energy to electricity to power a converter using direct methanol fuel ceil (DMFC) system. The characteristics of the TE module were tested at different temperatures. A boost BC-DC converter was designed and controlled by a power-supply controller chip. Efficiency of about 80% can be achieved and because the thermoelectric converter system has not moving parts and has a small volume, the system can be carried about easily and conveniently to supply portable electric equipment and this is very important for some mobile equipment.

  • PDF

차량 적용을 위한 열전 소자 최대 전력 추종 제어 비교 (Comparisons on Maximum Power Point Tracking Control of a Thermoelectric Generator on Vehicles)

  • 장요한;정승훈;배성우
    • 전력전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.159-166
    • /
    • 2021
  • This study compares the maximum power point tracking (MPPT) control methods of a thermoelectric generator on vehicles. The researchers conduct comparisons on five different MPPT methods, including a fractional open circuit voltage method, a perturbation and observation (P&O) method, an incremental conductance method, a linear extrapolation-based MPPT (LEMPPT) method, and a LEMPPT/P&O hybrid method. These five MPPT methods are theoretically analyzed in detail, and the comparisons are conducted through MATLAB/Simulink simulation results. The comparison outcomes reveal that linear MPPT methods, including LEMPPT and LEMPPT/P&O hybrid methods, are more suitable for a thermoelectric generator on vehicles than the other MPPT methods examined in this work.

차량용 냉방시스템에의 열전소자 적용에 관한 연구 (A Study on the Application of Thermoelectric Module in the Air Conditioner System Using Automotive)

  • 김순호
    • 동력기계공학회지
    • /
    • 제12권4호
    • /
    • pp.32-38
    • /
    • 2008
  • The improvement of cooling ability for the air conditioner is the most efficient method of application of its system. Therefore, this study has been investigated the improvement of cooling ability for the air conditioner using automotive by attached of a thermoelectric module. According to the result of test, capacity of the thermoelectric module make temperature range from $-75^{\circ}C$ to $+300^{\circ}C$ possible to cooling and exothermic. In addtion to, the reduction effect of energy revealed and the effect of liquid hammer remained with safety by attached the thermoelectric module. It was found that the air conditioner system by attached thermoelectric module have better cooling ability than the air conditioner system of existing vehicle.

  • PDF

Nanowires in Thermoelectric Devices

  • Davami, Keivan;Lee, Jeong-Soo;Meyyappan, M.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권6호
    • /
    • pp.227-233
    • /
    • 2011
  • The low efficiency of bulk thermoelectric materials has limited the widespread application of thermoelectric power generation. Theoretical and experimental investigations indicate that materials prepared in the form of nanowires show higher thermoelectric coefficients, thus promising to revolutionize the field. This article reviews the basics of thermoelectric power generation, conventional devices, the role of nanowires and the current status of the field.

Fabrication of Silicide-based Thermoelectric Nanocomposites: A Review

  • Kim, Gwansik;Kim, Wonkyung;Lee, Wooyoung
    • 한국세라믹학회지
    • /
    • 제56권5호
    • /
    • pp.435-442
    • /
    • 2019
  • Thermoelectric is a promising technology that can convert temperature differences to electricity (or vice versa). However, their relatively low efficiencies limit their applications to thermoelectric power generation systems. Therefore, low cost and high performance are important prerequisites for the application of thermoelectric materials to automotive thermoelectric generators. Silicide-based thermoelectric materials are good candidates for such applications. Recently, the thermoelectric performances of silicide-based thermoelectric materials have been significantly improved. However, increasing the thermoelectric performance of the materials while ensuring mechanical reliability remains a challenge. This review summarizes the preparation and design guidelines for silicide-based thermoelectric nanocomposites, as well as our recent progress in the development of nanocomposites with high thermoelectric performances or high mechanical reliabilities.

저온에서 La2/3+xTiO3-δ (x = 0, 0.13)세라믹스의 전자전도특성 (Low-Temperature Electron Transport Properties of La2/3+xTiO3-δ (x = 0, 0.13))

  • 정우환
    • 한국재료학회지
    • /
    • 제24권11호
    • /
    • pp.604-609
    • /
    • 2014
  • The thermoelectric power and dc conductivity of $La_{2/3+x}TiO_{3-{\delta}}$ (x = 0, 0.13) were investigated. The thermoelectric power was negative between 80K and 300K. The measured thermoelectric power of x = 0.13 increased linearly with increased temperatures and was represented by $S_0+BT$. The x = 0 sample exhibited insulating behavior, while the x = 0.13 sample showed metallic behavior. The electric resistivity of x = 0.13 had a linear temperature dependence at high temperatures and a T3/2 dependence below about 100K. On the other hand, the electric resistivity of x = 0 has a linear relation between $ln{\rho}/T$ and 1/T in the range of 200 to 300K, and the activation energy for small polaron hopping was 0.23 eV. The temperature dependence of thermoelectric power and the resistivity of x = 0 suggests that the charge carriers responsible for conduction are strongly localized. This temperature dependence indicates that the charge carrier (x = 0) is an adiabatic small polaron. These experimental results are interpreted in terms of spin (x = 0.13) and small polaron (x = 0) hopping of almost localized Ti 3d electrons.

La2NiO4+δ세라믹스의 유전이완 및 전기전도특성 (Dielectric Relaxation and Electrical Conduction Properties of La2NiO4+δ Ceramics)

  • 정우환
    • 한국재료학회지
    • /
    • 제21권7호
    • /
    • pp.377-383
    • /
    • 2011
  • Thermoelectric power, dc conductivity, and the dielectric relaxation properties of $La_2NiO_{4.03}$ are reported in the temperature range of 77 K - 300 K and in a frequency range of 20 Hz - 1 MHz. Thermoelectric power was positive below 300K. The measured thermoelectric power of $La_2NiO_{4.03}$ decreased linearly with temperature. The dc conductivity showed a temperature variation consistent with the variable range hopping mechanism at low temperatures and the adiabatic polaron hopping mechanism at high temperatures. The low temperature dc conductivity mechanism in $La_2NiO_{4.03}$ was analyzed using Mott's approach. The temperature dependence of thermoelectric power and dc conductivity suggests that the charge carriers responsible for conduction are strongly localized. The relaxation mechanism has been discussed in the frame of the electric modulus and loss spectra. The scaling behavior of the modulus and loss tangent suggests that the relaxation describes the same mechanism at various temperatures. The logarithmic angular frequency dependence of the loss peak is found to obey the Arrhenius law with activation energy of ~ 0.106eV. At low temperature, variable range hopping and large dielectric relaxation behavior for $La_2NiO_{4.03}$ are consistent with the polaronic nature of the charge carriers.