Browse > Article
http://dx.doi.org/10.4313/TEEM.2011.12.6.227

Nanowires in Thermoelectric Devices  

Davami, Keivan (Division of IT Convergence Engineering, Pohang University of Science and Technology)
Lee, Jeong-Soo (Division of IT Convergence Engineering, Pohang University of Science and Technology)
Meyyappan, M. (Division of IT Convergence Engineering, Pohang University of Science and Technology, National Aeronautics and Space Administration Ames Research Center)
Publication Information
Transactions on Electrical and Electronic Materials / v.12, no.6, 2011 , pp. 227-233 More about this Journal
Abstract
The low efficiency of bulk thermoelectric materials has limited the widespread application of thermoelectric power generation. Theoretical and experimental investigations indicate that materials prepared in the form of nanowires show higher thermoelectric coefficients, thus promising to revolutionize the field. This article reviews the basics of thermoelectric power generation, conventional devices, the role of nanowires and the current status of the field.
Keywords
Thermoelectric; Nanowires; Seebeck coefficient; Waste heat recovery;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Wang, F. Jia, Q. Huang, and J. Zhang, Microelectron. Eng. 77, 223 (2005) [http://dx.doi.org/10.1016/j.mee.2004.11.005].   DOI   ScienceOn
2 A. Nikolaeva, T. E. Huber, D. Gitsu, and L. Konopko, Phys. Rev. B 77, 035422 (2008) [http://dx.doi.org/10.1103/PhysRevB.77.035422].   DOI   ScienceOn
3 N. B. Duarte, Thermopower measurement of goild nanowire systems using a micromachined workbench, PhD dissertation (The Pennsylvania State University, State College, PA, 2008)
4 G. U. Sumanasekera, L. Grigorian, and P. C. Eklund, Meas. Sci. Technol. 11, 273 (2000) [http://dx.doi.org/10.1088/0957-0233/11/3/315].   DOI   ScienceOn
5 J. H. Seol, A. L. Moore, S. K. Saha, F. Zhou, L. Shi, Q. L. Ye, R. Scheffler, N. Mingo, and T. Yamada, J. Appl. Phys. 101, 023706 (2007) [http://dx.doi.org/10.1063/1.2430508].   DOI   ScienceOn
6 F. Zhou, J. H. Seol, A. L. Moore, L. Shi, Q. L. Ye, and R. Scheffler, J. Phys. Condens. Matter 18, 9651 (2006) [http://dx.doi.org/10.1088/0953-8984/18/42/011].   DOI   ScienceOn
7 Y. M. Zuev, J. S. Lee, C. Galloy, H. Park, and P. Kim, Nano Lett. 10, 3037 (2010) [http://dx.doi.org/10.1021/nl101505q].   DOI   ScienceOn
8 T. Ono, C. C. Fan, and M. Esashi, J. Microelectromech. Syst. 15, 1 (2005) [http://dx.doi.org/10.1088/0960-1317/15/1/001].
9 L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, and A. Majumdar, J. Heat Transfer 125, 881 (2003) [http://dx.doi.org/10.1115/1.1597619].   DOI   ScienceOn
10 H. E. Romero, G. U. Sumanasekera, G. D. Mahan, and P. C. Eklund, Phys. Rev. B 65, 205410 (2002) [http://dx.doi.org/10.1103/PhysRevB.65.205410].   DOI   ScienceOn
11 L. Shi, Q. Hao, C. Yu, N. Mingo, X. Kong, and Z. L. Wang, Appl. Phys. Lett. 84, 2638 (2004) [http://dx.doi.org/10.1063/1.1697622].   DOI   ScienceOn
12 F. Zhou, J. Szczech, M. T. Pettes, A. L. Moore, S. Jin, and L. Shi, Nano Lett. 7, 1649 (2007) [http://dx.doi.org/10.1021/nl0706143].   DOI   ScienceOn
13 M. Tian, J. Wang, J. Kurtz, T. E. Mallouk, and M. H. W. Chan, Nano Lett. 3, 919 (2003) [http://dx.doi.org/10.1021/nl034217d].   DOI   ScienceOn
14 J. Zhou, C. Jin, J. H. Seol, X. Li, and L. Shi, Appl. Phys. Lett. 87, 133109 (2005) [http://dx.doi.org/10.1063/1.2058217].   DOI
15 K. Devami, D. Kang, J. Lee, and M. Meyyappan, Chem. Phys. Lett., 504, 62 (2011) [http://dx.doi.org/10.1016/j.cplett.2011.01.053].   DOI   ScienceOn
16 K. Davami, H. M. Ghassemi, X. Sun, R. S. Yassar, J. S. Lee, and M. Meyyappan, Nanotechnology 22, 435204 (2011) [http://dx.doi.org/10.1088/0957-4484/22/43/435204].   DOI   ScienceOn
17 F. S. S. Chien, C. L. Wu, Y. C. Chou, T. T. Chen, S. Gwo, and W. F. Hsieh, Appl. Phys. Lett. 75, 2429 (1999) [http://dx.doi.org/10.1063/1.125037].   DOI
18 Y. J. Chen, J. H. Hsu, and H. N. Lin, Nanotechnology 16, 1112 (2005) [http://dx.doi.org/10.1088/0957-4484/16/8/020].   DOI   ScienceOn
19 S. A. Harfenist, S. D. Cambron, E. W. Nelson, S. M. Berry, A. W. Isham, M. M. Crain, K. M. Walsh, R. S. Keynton, and R. W. Cohn, Nano Lett. 4, 1931 (2004) [http://dx.doi.org/10.1021/nl048919u].   DOI   ScienceOn
20 F. Zhou, A. L. Moore, M. T. Pettes, Y. Lee, J. H. Seol, Q. L. Ye, L. Rabenberg, and L. Shi, J. Phys. D: Appl. Phys. 43, 025406 (2010) [http://dx.doi.org/10.1088/0022-3727/43/2/025406].   DOI   ScienceOn
21 Y. H. Tang, Y. F. Zheng, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 328, 346 (2000) [http://dx.doi.org/10.1016/S0009-2614(00)00862-9].   DOI   ScienceOn
22 G. Zhang, Q. Yu, W. Wang, and X. Li, Adv. Mater. 22, 1959 (2010) [http://dx.doi.org/10.1002/adma.200903812].   DOI   ScienceOn
23 A. R. Abramson, W. C. Kim, S. T. Huxtable, H. Yan, Y. Wu, A. Majumdar, C. L. Tien, and P. Yang, J. Microelectromech. Syst. 13, 505 (2004) [http://dx.doi.org/10.1109/jmems.2004.828742].   DOI   ScienceOn
24 S. H. Lee, W. Shim, S. Y. Jang, J. W. Roh, P. Kim, J. Park, and W. Lee, Nanotechnology 22, 295707 (2011) [http://dx.doi.org/10.1088/0957-4484/22/29/295707].   DOI   ScienceOn
25 M. Fardy, A. L. Hochbaum, J. Goldberger, M. M. Zhang, and P. Yang, Adv. Mater. 19, 3047 (2007) [http://dx.doi.org/10.1002/adma.200602674].   DOI   ScienceOn
26 G. Zhang, W. Wang, and X. Li, Adv. Mater. 20, 3654 (2008) [http://dx.doi.org/10.1002/adma.200800162].   DOI   ScienceOn
27 J. Kang, J. W. Roh, W. Shim, J. Ham, J. S. Noh, and W. Lee, Adv. Mater. 23, 3414 (2011) [http://dx.doi.org/10.1002/adma.201101460].   DOI   ScienceOn
28 M. Hu, K. P. Giapis, J. V. Goicochea, X. Zhang, and D. Poulikakos, Nano Lett. 11, 618 (2011) [http://dx.doi.org/10.1021/nl103718a].   DOI   ScienceOn
29 A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008) [http://dx.doi.org/10.1038/nature06381].   DOI   ScienceOn
30 J. W. Roh, K. Hippalgaonkar, J. H. Ham, R. Chen, M. Z. Li, P. Ercius, A. Majumdar, W. Kim, and W. Lee, ACS Nano 5, 3954 (2011) [http://dx.doi.org/10.1021/nn200474d].   DOI   ScienceOn
31 T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, Science 297, 2229 (2002) [http://dx.doi.org/10.1126/science.1072886].   DOI   ScienceOn
32 A. L. Moore, M. T. Pettes, F. Zhou, and L. Shi, J. Appl. Phys. 106, 034310 (2009) [http://dx.doi.org/10.1063/1.3191657].   DOI   ScienceOn
33 M. Meyyappan and M. K. Sunkara, Inorganic Nanowires: Applications, Properties, and Characterization (CRC Press, Boca Raton, 2010).
34 R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, Nature 413, 597 (2001) [http://dx.doi.org/10.1038/35098012].   DOI   ScienceOn
35 W. Liang, O. Rabin, A. I. Hochbaum, M. Fardy, M. Zhang, and P. Yang, Nano Res. 2, 394 (2009) [http://dx.doi.org/10.1007/s12274-009-9039-2].   DOI
36 L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 16631 (1993) [http://dx.doi.org/10.1103/PhysRevB.47.16631].   DOI   ScienceOn
37 A. Casian, I. Sur, A. Sandu, H. Scherrer, and S. Scherrer, Proceedings of the 16th International Conference on Thermoelectrics (Dresden, German 1997 Aug. 26-29, IEEE) p. 442. [http://dx.doi.org/10.1109/ICT.1997.667182].
38 M. S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. B. Cronin, and T. Koga, Phys. Solid State 41, 679 (1999) [http://dx.doi.org/10.1134/1.1130849].   DOI
39 N. Mingo, Appl. Phys. Lett. 85, 5986 (2004) [http://dx.doi.org/10.1063/1.1829391].   DOI   ScienceOn
40 N. Mingo, Appl. Phys. Lett. 84, 2652 (2004) [http://dx.doi.org/10.1063/1.1695629].   DOI   ScienceOn
41 The Auto Channel. Retrieved November, 2011 from http://www.theautochannel.com.
42 T. T. M. Vo, A. J. Williamson, V. Lordi, and G. Galli, Nano Lett. 8, 1111 (2008) [http://dx.doi.org/10.1021/nl073231d].   DOI   ScienceOn
43 A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard Iii, and J. R. Heath, Nature 451, 168 (2008) [http://dx.doi.org/10.1038/nature06458].   DOI   ScienceOn
44 Jet Propulsion Laboratory. Voyager. Retrieved November, 2011 from http://voyager.jpl.nasa.gov.
45 Hui Mao. Retrieved November, 2011 from http://www.huimao.com/.
46 TES NewEnergy Corporation. Retrieved November, 2011 from http://www.tes-ne.com/.
47 M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007) [http://dx.doi.org/10.1002/adma.200600527].   DOI   ScienceOn
48 M. G. Kanatzidis, Chem. Mater. 22, 648 (2010) [http://dx.doi.org/10.1021/cm902195j].   DOI   ScienceOn
49 A. Boukai, K. Xu and J. Heath, Adv. Mater. 18, 864, (2006) [http://dx/doi.org/10.1002/adma200502194].   DOI   ScienceOn
50 T. E. Humphrey and H. Linke, Phys. Rev. Lett. 94, 096601 (2005) [http://dx.doi.org/10.1103/PhysRevLett.94.096601].   DOI   ScienceOn
51 L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993) [http://dx.doi.org/10.1103/PhysRevB.47.12727].   DOI   ScienceOn
52 P. H. Egli, Thermoelectricity: Including the Proceedings of the Conference on Thermoelectricity, September, 1958 (John Wiley & Sons, New York, 1960).
53 H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, and K. Koumoto, Nat. Mater. 6, 129 (2007) [http://dx.doi.org/10.1038/nmat1821].   DOI   ScienceOn
54 J. F. Li, W. S. Liu, L. D. Zhao, and M. Zhou, NPG Asia Mater. 2, 152 (2010) [http://dx.doi.org/10.1038/asiamat.2010.138].   DOI
55 N. Mingo, D. Hauser, N. P. Kobayashi, M. Plissonnier, and A. Shakouri, Nano Lett. 9, 711 (2009) [http://dx.doi.org/10.1021/n18031982].   DOI   ScienceOn
56 L. D. Chen, X. Y. Huang, M. Zhou, X. Shi, and W. B. Zhang, J. Appl. Phys. 99, 064305 (2006) [http://dx.doi.org/10.1063/1.2180432].   DOI   ScienceOn
57 L. D. Zhao, B. P. Zhang, J. F. Li, M. Zhou, W. S. Liu, and J. Liu, J. Alloys Compd. 455, 259 (2008) [http://dx.doi.org/10.1016/j.jallcom.2007.01.015].   DOI   ScienceOn
58 X. Y. Zhao, X. Shi, L. D. Chen, W. Q. Zhang, W. B. Zhang, and Y. Z. Pel, J. Appl. Phys. 99, 053711 (2006) [http://dx.doi.org/10.1063/1.2172705].   DOI   ScienceOn
59 J. R. Sootsman, H. Kong, C. Uher, J. J. D'Angelo, C.-I. Wu, T. P. Hogan, T. Caillat, and M. G. Kanatzidis, Angew. Chem. Int. Ed. 47, 8618 (2008) [http://dx.doi.org/10.1002/anie.200803934].   DOI   ScienceOn
60 H. Li, X. Tang, X. Su, and Q. Zhang, Appl. Phys. Lett. 92, 202114 (2008) [http://dx.doi.org/10.1063/1.2936277].   DOI   ScienceOn
61 A. F. Ioffe, Semiconductor Thermoelements, and Thermoelectric Cooling (Infosearch, London, UK, 1957).
62 W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, Phys. Rev. Lett. 96, 045901 (2006) [http://dx.doi.org/10.1103/PhysRevLett.96.045901].   DOI   ScienceOn
63 A. Majumdar, Science 303, 777 (2004) [http://dx.doi.org/10.1126/science.1093164].   DOI   ScienceOn
64 J. S. Rhyee, K. H. Lee, S. M. Lee, E. Cho, S. I. Kim, E. Lee, Y. S. Kwon, J. H. Shim, and G. Kotliar, Nature 459, 965 (2009) [http://dx.doi.org/10.1038/nature08088].   DOI   ScienceOn
65 I. B. Cadoff and E. Miller, Thermoelectric Materials and Devices (Reinhold Publishing, New York, 1960).
66 T. M. Tritt, Annu. Rev. Mater. Res. 41, 433 (2011) [http://dx.doi.org/10.1146/annurev-matsci-062910-100453].   DOI   ScienceOn
67 D. K. C. MacDonald, Thermoelectricity: An Introduction to the Principles (John Wiley & Sons, New York, 1962).
68 R. R. Heikes and R. W. Ure, Thermoelectricity: Science and Engineering (Interscience Publishers, New York, 1961).