• Title/Summary/Keyword: thermoelectric module

Search Result 143, Processing Time 0.034 seconds

A performance comparison of heat sink using FEM in the natural convection (자연대류에서 유한요소법을 이용한 히트싱크의 성능비교)

  • Lee, Min;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.12 no.1
    • /
    • pp.31-35
    • /
    • 2018
  • The peltier thermoelectric module are used to cool the heat generated by electronic equipment. In order to increase the efficiency of the peltier thermoelectric module, the heat must be released to the outside. A heat sink is used to discharge such heat to the outside. in this paper, two types of heat sinks with internal tunnels were designed. And the heating and cooling performance of the heat sink with internal tunnel structure was compared and analyzed through ANSYS. The heat sink of the A type had better heat transfer than the heat sink of the B type. Which is about 70% improved.

Power Generation Properties and Bending Characteristics of a Flexible Thermoelectric Module Fabricated using PDMS Filling Method (PDMS 충진법을 이용하여 형성한 유연열전모듈의 발전특성과 굽힘특성)

  • Han, Kee Sun;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.119-126
    • /
    • 2019
  • A flexible thermoelectric module, which consisted of 18 pairs of Bi2Te3-based hot-pressed p-n thermoelectric legs, were processed by filling the module inside with polydimethylsiloxane (PDMS) and removing the top and bottom substrates. Its power generation properties and bending characteristics were measured. With putting the flexible module on the wrist, an open circuit voltage of 2.23 mV and a maximum output power of 1.69 ㎼ were generated during staying still. On the other hand, an open circuit voltage of 3.32 mV and a maximum output power of 3.41 ㎼ were obtained with walking motion. The resistance variation of the module was kept below 1% even after applying 30,000 bending cycles with a bending curvature radius of 25 mm.

Organic-Inorganic Hybrid Thermoelectric Material Synthesis and Properties

  • Kim, Jiwon;Lim, Jae-Hong
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.272-277
    • /
    • 2017
  • Organic-inorganic hybrid thermoelectric materials have obtained increasing attention because it opens the possibility of enhancing thermoelectric performance by utilizing the low thermal conductivity of organic thermoelectric materials and the high Seebeck coefficient of inorganic thermoelectric materials. Moreover, the organic-inorganic hybrid thermoelectric materials possess numerous advantages, including functional aspects such as flexibility or transparency, low cost raw materials, and simplified fabrication processes, thus, allowing for a wide range of potential applications. In this study, the types and synthesis methods of organic-inorganic thermoelectric hybrid materials were discussed along with the methods used to enhance their thermoelectric properties. As a key factor to maximize the thermoelectric performances of hybrid thermoelectric materials, the nanoengineering to control the nanostructure of the inorganic materials as well as the modification of the organic material structure and doping level are considered, respectively. Meanwhile, the interface between the inorganic and organic phase is also important to develop the hybrid thermoelectric module with excellent reliability and high thermoelectric efficiency in addition to its performance in various electronic devices.

A Study on Enhancement of Thermoelectric Cooling System Performance by Piezoelectric Actuator (압전 액츄에이터를 이용한 열전냉각 시스템 성능 향상에 관한 연구)

  • Yang, Ho-Dong;Yoon, Hee-Sung;Oh, Yool-Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.13-19
    • /
    • 2009
  • The thermoelectric cooling system consisted of the thermoelectric module, a heat sink and a cooling fan, respectively. Also, the piezoelectric actuator was applied to improve the performance of thermoelectric cooling system and investigate the heat transfer phenomenon. The temperature distribution of test section was measured to investigate cooling characteristics of thermoelectric cooling system. The flow phenomenon of test section was visualized using visualization device. When the piezoelectric actuator was applied to the heat transfer process of thermoelectric cooling system, acoustic streaming was occurred in test section. The acoustic streaming was occurred forced convection flow, and was regularly formed the temperature distribution in test section. The results clearly show that the acoustic streaming is one of the prime effects to enhance the convection heat transfer and can enhance the performance of thermoelectric cooling system.

Characteristic of Electric Generation for the Water Flow Rate in Thermoelctric Generator Using Hot Water (온수를 이용한 열전발전기에서 유량변화에 따른 발전 특성)

  • Woo, Byung-Chul;Lee, Hee-Woong;Suh, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1333-1340
    • /
    • 2002
  • The objective of this study is to develop a thermoelectric generation system which converts unused energy from close-at-hand sources such as garbage incineration heat and industrial exhaust etc. into electricity. This paper presents applicability of a commercially available thermoelectric generator f3r waster heat recovery. The test facility consists of water heater, pump, thermoelectric module and aluminium tubes and hot and cold water is used as heat source and sink fluids. It is shown that the three components of thermoelectric research exist in manufacturing a thermoelectric generator. The first component is fabrication of thermoelectric materials, the second is manufacturing of thermoelectric generator with 32 thermoelectric modules. The last one is characteristic measuring of thermoelectric generator with 32 thermoelectric modules of two types, cooling and power purpose. It was found that the rate of cold and hot water is 25 and 37 liter per minute and the maximum power of thermoelectric generator is 28Watts and its efficiency is 1.04%.

Study on the Variation of Electrical Internal Resistance for Thermoelectric Generator Module with Operating Temperature (운전 온도에 따른 열전발전 모듈의 전기적 내부 저항 변화에 대한 연구)

  • Kim, Yun-Ho;Kim, Myung-Kee;Kim, Seo-Young;Rhee, Gwang-Hoon;Um, Suk-Kee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • An analysis model considered the manufacturing factors and the pellet size has been developed in order to predict the performance characteristics of thermoelectric modules as generators. Since the electrical internal resistance has a significant role in the performance of thermoelectric modules, the variations of electrical internal resistance with operating temperature are experimentally measured. The modified electrical internal resistance calculated from an experimental correlation is applied to the analysis model. To verify the modified analysis model, the output voltage, output current and output power are compared with experimental results for the operating temperature conditions of $T_h=85^{\circ}C$ and ${\Delta}T=40^{\circ}C$. The modified analysis shows a good agreement with the experimental results in terms of the output voltage, current, and power.

Development for Inserted Type Coling System in Computer (컴퓨터 내장형 냉각시스템 개발)

  • Lee, Hyeon-Yong;Im, Seon-Jong
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2009.11a
    • /
    • pp.399-404
    • /
    • 2009
  • The research for computer cooling system has been researched briskly at home and abroad. Most of computer cooling systems are the air cooling method using cooling fan. The air cooling system are most widely used for low cost and easy installation but have limits in cooling. The water cooling system are good for cooling efficiency but bad for installation. This paper presents the developing for cooling system to be inserted in computer using thermoelectric module.

  • PDF

Temperature Control of the Aluminum Plate with Pottier Module by PWM Current Control (PWM 전류제어와 펠티어 소자를 이용한 알루미늄 판의 온도 제어)

  • Pang Du-Yeol;Kwon Tae-Kyu;Lee Seong-Cheol
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.897-900
    • /
    • 2005
  • This paper presents temperature control of aluminum plate using Peltier module. As one of the thermoelectric effect, Peltier effect is heat pumping phenomena by electric energy. So if current is charged to Peltier module, it absorbs heat from low temperature side and emits heat to high temperature side. In this experiment, Peltier module is used to control the temperature of small aluminum plate with heating and cooling ability of Peltier module with current control and fan On/OFF control. And current control of Peltier module was accomplished by PWM method. As a results of experiments, it takes about 125sec to control temperature of aluminium plate between $30^{\circ}C\;and\;70^{\circ}C$ and about 70sec between $40^{\circ}C\;and\;60^{\circ}C$, in ambient temperature $29^{\circ}C$ while operating cooling fan only while cooling duration. Future aim is to realize more rapid temperature control and develop SMHA(special metal hydride actuator) by using Peltier module as a heating and cooling source.

  • PDF

Characteristics of thermal stress for thermoelectric generator with sliding (온도차를 이용한 열전발전기의 sliding에 따른 열응력 특성)

  • Woo, B.C.;Lee, H.W.;Lee, D.Y.;Kim, B.S.;Kim, B.G.;Suh, C.M.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1904-1906
    • /
    • 1999
  • The purpose of this study is to manufacture and test a thermoelectric generator which converts unused energy from close-at-hand sources, such as garbage incineration heat and industrial exhaust, to electricity. A manufacturing process and the properties of a thermoelectric generator are discussed before simulating the thermal stress and thermal properties of a thermoelectric module located between an aluminum tube and alumina plate. It was shown that the electric voltage of a thermoelectric generator with 128 thermoelectric modules was 4.8 voltage per Kelvin, and the longitudinal stresses of an aluminum tube with a two-point constrained tube could be released more than those with a one-point constrained tube.

  • PDF

The Packaging Technology Thermoelectric Generator (열전모듈을 이용한 발전기의 패키징)

  • 한경목;황창원;백동규;최승철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.3
    • /
    • pp.1-6
    • /
    • 2000
  • A simple and compact type of thermoelectric generator was developed as the energy saving system using waste hot water and low temperature waste heat sources. Sixteen of Bi-Te thermoelectric modules were packaged in series for thermoelectric conversion system using hot water as heat source. The thermoelectric generator shows the power output of about 4.5 W with the temperature difference of about 75 K at 40 $\Omega$ and 0.35 A for the electrical resistance and current of the used thermoelectric module, respectively.

  • PDF