Browse > Article
http://dx.doi.org/10.4191/kcers.2017.54.4.12

Organic-Inorganic Hybrid Thermoelectric Material Synthesis and Properties  

Kim, Jiwon (Electrochemistry Research Group, Materials Processing Division, Korea Institute of Materials Science)
Lim, Jae-Hong (Electrochemistry Research Group, Materials Processing Division, Korea Institute of Materials Science)
Publication Information
Abstract
Organic-inorganic hybrid thermoelectric materials have obtained increasing attention because it opens the possibility of enhancing thermoelectric performance by utilizing the low thermal conductivity of organic thermoelectric materials and the high Seebeck coefficient of inorganic thermoelectric materials. Moreover, the organic-inorganic hybrid thermoelectric materials possess numerous advantages, including functional aspects such as flexibility or transparency, low cost raw materials, and simplified fabrication processes, thus, allowing for a wide range of potential applications. In this study, the types and synthesis methods of organic-inorganic thermoelectric hybrid materials were discussed along with the methods used to enhance their thermoelectric properties. As a key factor to maximize the thermoelectric performances of hybrid thermoelectric materials, the nanoengineering to control the nanostructure of the inorganic materials as well as the modification of the organic material structure and doping level are considered, respectively. Meanwhile, the interface between the inorganic and organic phase is also important to develop the hybrid thermoelectric module with excellent reliability and high thermoelectric efficiency in addition to its performance in various electronic devices.
Keywords
Thermoelectric; Organic-inorganic hybrid thermoelectric materials; Nanoengineering; Thermoelectric properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder "Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States," Science, 321 [5888] 554-57 (2008).   DOI
2 M. Hong, T. C. Chasapis, Z.-G. Chen, L. Yang, M. G. Kanatzidis, G. J. Snyder, and J. Zou, "n-Type $Bi_2Te_{3-x}Se_x$ Nanoplates with Enhanced Thermoelectric Efficiency Driven by Wide-Frequency Phonon Scatterings and Synergistic Carrier Scatterings," ACS Nano, 10 [4] 4719-27 (2016).   DOI
3 J. Carrete, N. Mingo, G. Tian, H. Agren, A. Baev, and P. N. Prasad, "Thermoelectric Properties of Hybrid Organic-Inorganic Superlattices," J. Phys. Chem. C, 116 [20] 10881-86 (2012).   DOI
4 Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Muller-Meskamp, and K. Leo, "Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells," Adv. Funct. Mater., 21 [6] 1076-81 (2011).   DOI
5 M. Martin-Gonzalez, O. Caballero-Calero, and P. Diaz-Chao, "Nanoengineering Thermoelectrics for 21st Century: Energy Harvesting and Other Trends in the Field," Renewable Sustainable Energy Rev., 24 288-305 (2013).   DOI
6 M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J.-P. Fleurial, and P. Gogna, "New Directions for Low-Dimensional Thermoelectric Materials," Adv. Mater., 19 [8] 1043-53 (2007).   DOI
7 B. C. Sales, "Electron Crystals and Phonon Glasses: A New Path to Improved Thermoelectric Materials," MRS Bull., 23 [1] 15-21 (1998).
8 D.-K. Ko, Y. Kang, and C. B. Murray, "Enhanced Thermopower via Carrier Energy Filtering in Solution-Processable Pt-$Sb_2Te_3$ Nanocomposites," Nano Lett., 11 [7] 2841-44 (2011).   DOI
9 Y. Du, S. Z. Shen, K. Cai, and P. S. Casey, "Research Progress on Polymer-Inorganic Thermoelectric Nanocomposite Materials," Prog. Polym. Sci., 37 [6] 820-41 (2012).   DOI
10 Y. Sun, L. Qiu, L. Tang, H. Geng, H. Wang, F. Zhang, D. Huang, W. Xu, P. Yue, Y.-S. Guan, F. Jiao, Y. Sun, D. Tang, C.-A. Di, Y. Yi, and D. Zhu, "Flexible n-Type High-Performance Thermoelectric Thin Films of Poly(nickelethylenetetrathiolate) Prepared by an Electrochemical Method," Adv. Mater., 28 [17] 3351-58 (2016).   DOI
11 C. Gayner and K. K. Kar, "Recent Advances in Thermoelectric Materials," Prog. Mater. Sci., 83 330-82 (2016).   DOI
12 O. Bubnova, Z. U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, and X. Crispin, "Optimization of the Thermoelectric Figure of Merit in the Conducting Polymer Poly(3,4-ethylenedioxythiophene)," Nat. Mater., 10 [6] 429-33 (2011).   DOI
13 G. H. Kim, L. Shao, K. Zhang, and K. P. Pipe, "Engineered Doping of Organic Semiconductors for Enhanced Thermoelectric Efficiency," Nat. Mater., 12 [8] 719-23 (2013).   DOI
14 Q. Wang, Q. Yao, J. Chang, and L. Chen, "Enhanced Thermoelectric Properties of CNT/PANI Composite Nanofibers by Highly Orienting the Arrangement of Polymer Chains," J. Mater. Chem., 22 [34] 17612-18 (2012).   DOI
15 S. K. Yee, N. E. Coates, A. Majumdar, J. J. Urban, and R. A. Segalman, "Thermoelectric Power Factor Optimization in PEDOT:PSS Tellurium Nanowire Hybrid Composites," Phys. Chem. Chem. Phys., 15 [11] 4024-32 (2013).   DOI
16 G. Lu, C. Li, J. Shen, Z. Chen, and G. Shi, "Preparation of Highly Conductive Gold-Poly(3,4-ethylenedioxythiophene) Nanocables and Their Conversion to Poly(3,4-ethylenedioxythiophene) Nanotubes," J. Phys. Chem. C, 111 [16] 5926-31 (2007).   DOI
17 Y. Wang, K. Cai, and X. Yao, "Facile Fabrication and Thermoelectric Properties of PbTe-Modified Poly(3,4-ethylenedioxythiophene) Nanotubes," ACS Appl. Mater. Interfaces, 3 [4] 1163-66 (2011).   DOI
18 K. C. See, J. P. Feser, C. E. Chen, A. Majumdar, J. J. Urban, and R. A. Segalman, "Water-Processable Polymer-Nanocrystal Hybrids for Thermoelectrics," Nano Lett., 10 [11] 4664-67 (2010).   DOI
19 Y. Du, K. F. Cai, S. Chen, P. Cizek, and T. Lin, "Facile Preparation and Thermoelectric Properties of $Bi_2Te_3$ Based Alloy Nanosheet/PEDOT:PSS Composite Films," ACS Appl. Mater. Interfaces, 6 [8] 5735-43 (2014).   DOI
20 H. Ju and J. Kim, "Fabrication of Conductive Polymer/Inorganic Nanoparticles Composite Films: PEDOT:PSS with Exfoliated Tin Selenide Nanosheets for Polymer-Based Thermoelectric Devices," Chem. Eng. J., 297 66-73 (2016).   DOI
21 J. Choi, J. Y. Lee, S. S. Lee, C. R. Park, and H. Kim, "High-Performance Thermoelectric Paper Based on Double Carrier-Filtering Processes at Nanowire Heterojunctions," Adv. Energy Mater., 6 [9] 1502181 (2016).   DOI
22 Q. Zhang, Y. Sun, W. Xu, and D. Zhu, "Organic Thermoelectric Materials: Emerging Green Energy Materials Converting Heat to Electricity Directly and Efficiently," Adv. Mater., 26 [40] 6829-51 (2014).   DOI
23 G. J. Snyder and E. S. Toberer, "Complex Thermoelectric Materials," Nat. Mater., 7 [2] 105-14 (2008).   DOI
24 W. Xie, X. Tang, Y. Yan, Q. Zhang, and T. M. Tritt, "Unique Nanostructures and Enhanced Thermoelectric Performance of Melt-Spun BiSbTe Alloys," Appl. Phys. Lett., 94 [10] 102111 (2009).   DOI
25 S. I. Kim, K. Ahn, D.-H. Yeon, S. Hwang, H.-S. Kim, S. M. Lee, and K. H. Lee, "Enhancement of Seebeck Coefficient in $Bi_{0.5}Sb_{1.5}Te_3$ with High-Density Tellurium Nanoinclusions," Appl. Phys. Express, 4 [9] 091801 (2011).   DOI
26 D. L. Medlin and G. J. Snyder, "Interfaces in Bulk Thermoelectric Materials: A Review for Current Opinion in Colloid and Interface Science," Curr. Opin. Colloid Interface Sci., 14 [4] 226-35 (2009).   DOI
27 S. R. S. Kumar, N. Kurra, and H. N. Alshareef, "Enhanced High Temperature Thermoelectric Response of Sulphuric Acid Treated Conducting Polymer Thin Films," J. Mater. Chem. C, 4 [1] 215-21 (2016).   DOI
28 B. Cho, K. S. Park, J. Baek, H. S. Oh, Y. E. K. Lee, and M. M. Sung, "Single-Crystal Poly(3,4-ethylenedioxythiophene) Nanowires with Ultrahigh Conductivity," Nano Lett., 14 [6] 3321-27 (2014).   DOI