• 제목/요약/키워드: thermoelectric effects

검색결과 93건 처리시간 0.03초

PbTe계의 열전특성에 대한 미세구조의 영향 (Microstructural Effects on the Thermoelectric Prooperties of PbTe)

  • 송병덕;김문규
    • 한국세라믹학회지
    • /
    • 제27권4호
    • /
    • pp.481-486
    • /
    • 1990
  • Microstructure of polycrystalline Lead Telluride was controlled by the change of sintering conditions. Three properties which determine the thermoelectric figure of merit of the material were measured in the temperature range of 300-650K in order to investigate the effect of each sintering condition on the thermoelectric efficiency. Based on the observed experimental results, defect structure is concluded to be more important than microstructure though both can be controlled by processing variables.

  • PDF

Recent Advances in Thermoelectric Power Generation Technology

  • Sharma, Ashutosh;Lee, Jun Hyeong;Kim, Kyung Heum;Jung, Jae Pil
    • 마이크로전자및패키징학회지
    • /
    • 제24권1호
    • /
    • pp.9-16
    • /
    • 2017
  • Thermoelectric power generation (TEG) technology with high figure of merit (ZT) has become the need of the modern world. TEG is a potent technology which can tackle most of the environmental issues such as global warming, change in climatic conditions over the globe, and for burning out of various resources of non-renewable energy like as petroleum deposits and gasolines. Although thermoelectric materials generally convert the heat energy from wastes to electricity according to the theories Seebeck and Peltier effects yet they have not been fully exploited to realize their potential. Researchers are focusing mainly on how to improve the current ZT value from 1 to 2 or even 3 by various approaches. However, a higher ZT value is found to be difficult due to complex thermoelectric properties of materials. Hence, there is a need for developing materials with high figure of merit. Recently, various nanotechnological approaches have been incorporated to improve the thermoelectric properties of materials. In this review paper, the authors have performed a thorough literature survey of various kinds of TEG technology.

원자층 증착법을 이용한 열전 소재 연구 동향 (Recent progress on Performance Improvements of Thermoelectric Materials using Atomic Layer Deposition)

  • 이승혁;박태주;김성근
    • 한국분말재료학회지
    • /
    • 제29권1호
    • /
    • pp.56-62
    • /
    • 2022
  • Atomic layer deposition (ALD) is a promising technology for the uniform deposition of thin films. ALD is based on a self-limiting mechanism, which can effectively deposit thin films on the surfaces of powders of various sizes. Numerous studies are underway to improve the performance of thermoelectric materials by forming core-shell structures in which various materials are deposited on the powder surface using ALD. Thermoelectric materials are especially relevant as clean energy storage materials due to their ability to interconvert between thermal and electrical energy by the Seebeck and Peltier effects. Herein, we introduce a surface and interface modification strategy based on ALD to control the performance of thermoelectric materials. We also discuss the properties of the interface between various deposition materials and thermoelectric materials.

평행유동에서 공랭식 열전모듈 냉각시스템의 성능에 관한 연구 (A Study on Performance of Thermoelectric Air-Cooling System in Parallel Flow)

  • 강상우;신재훈;한훈식;김서영
    • 설비공학논문집
    • /
    • 제23권6호
    • /
    • pp.421-429
    • /
    • 2011
  • Experimental and theoretical studies on cooling performance of two-channel thermoelectric air-cooling system in parallel flow are conducted. The effects of operating temperature to physical properties of thermoelectric module (TEM) are experimentally examined and used in the analysis of an air-cooling system considering thermal network and energy balance. The theoretical predicted temperature variation and cooling capacity are in good agreement with measured data, thereby validating analytic model. The heat absorbed rate increases with increasing the voltage input and decreasing thermal resistance of the system. The power consumption of TEM is linearly proportional to mean temperature differences due to variations of the physical properties on operation temperature of TEM. Furthermore thermal resistance of hot side has greater effects on cooling performance than that of cold side.

고주파 진공유도로로 제작한 p형 SiGe 합금의 열전변환물성 (The Thermoelectric Properties of p-type SiGe Alloys Prepared by RF Induction Furnace)

  • 이용주;배철훈
    • 한국세라믹학회지
    • /
    • 제37권5호
    • /
    • pp.432-437
    • /
    • 2000
  • Thermoelectric properties of p-type SiGe alloys prepared by a RF inductive furnace were investigated. Non-doped Si80Ge20 alloys were fabricated by control of the quantity of volatile Ge. The carrier of p-type SiGe alloy was controlled by B-doping. B doped p-type SiGe alloys were synthesized by melting the mixture of Ge and Si containing B. The effects of sintering/annealing conditions and compaction pressure on thermoelectric properties (electrical conductivity and Seebeck coefficient) were investigated. For nondoped SiGe alloys, electrical conductivity increased with increasing temperatures and Seebeck coefficient was measured negative showing a typical n-type semiconductivity. On the other hand, B-doped SiGe alloys exhibited positive Seebeck coefficient and their electrical conductivity decreased with increasing temperatures. Thermoelectric properties were more sensitive to compaction pressure than annealing time. The highest power factor obtained in this work was 8.89${\times}$10-6J/cm$.$K2$.$s for 1 at% B-doped SiGe alloy.

  • PDF

Memory response in elasto-thermoelectric spherical cavity

  • El-Attar, Sayed I.;Hendy, Mohamed H.;Ezzat, Magdy A.
    • Coupled systems mechanics
    • /
    • 제9권4호
    • /
    • pp.325-342
    • /
    • 2020
  • A mathematical model of electro-thermoelasticity subjected to memory-dependent derivative (MDD) heat conduction law is applied to a one-dimensional problem of a thermoelectric spherical cavity exposed to a warm stun that is an element of time in the presence of a uniform magnetic field. Utilizing Laplace transform as an instrument, the issue has been fathomed logically within the changed space. Numerical inversion of the Laplace transform is carried for the considered distributions and represented graphically. Some comparisons are shown in the figures to estimate the effects of MDD parameters and thermoelectric properties on the behavior of all considered fields.

열전박막을 이용한 마이크로 냉각소자 제작 (Fabrication of a Micro Cooler using Thermoelectric Thin Film)

  • 한승우;최현주;김병일;김병민;김동호;김욱중
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1459-1462
    • /
    • 2007
  • In general a thermoelectric cooler (TEC) consists of a series of P type and N type thermoelectric materials sandwiched between two wafers. When a DC current passes through these materials, three different effects take place; Peltier effect, Joule heating effect and heat transfer by conduction due to temperature difference between hot and cold plates. In this study we have developed a micro TEC using $Bi_2Te_3$ (N type) and $Bi_{0.5}Sb_{1.5}Te_3$ (P type) thin films. In order to improve that performance of a micro TEC, we made 10 um height TE legs using special PR only for lift-off. We measured COP (coefficient of performance) and temperature difference between hot and cold connectors with current.

  • PDF

열전 냉각기가 집적된 레이저 다이오드 (Design and Fabrication of Laser Diode Integrated with Peltier Cooler)

  • 이상일;박정호
    • 전자공학회논문지A
    • /
    • 제32A권1호
    • /
    • pp.159-165
    • /
    • 1995
  • A double-heterostructure mesa-stripe-geometry laser diode integrated with thermoelectric Peltier cooler has been designed and fabricated. Epi-layers have been grown by metal organic chemical vapor deposition(MOCVD) method. Peltier cooling effect has been measured for devices with a mesa width of 14$\mu$m and a cavity length of 380$\mu$m. The effects of thermoelectric cooling could be shown by measuring the optical output of the laser with the increase of the current in the thermoelectric cooler. While the input courrent of the laser was maintained at 250mA, the optical output was decreased from 4.8mW to 3.8mW due to heating, but with the thermoelectric cooler on the optical output power was recovered by more than 40%. The results show that the complicated cooling device is not needed since the cooling can be achevied by the developement of the fabrication processing.

  • PDF

열전소자를 이용한 열교환기 특성 고찰 (Study on Characteristics of Heat Exchangers Using Thermoelectric Modules)

  • 박용군;권동호;김성도;전재수;오범규;김상민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.832-835
    • /
    • 2003
  • This paper presents the investigation and development of heat exchangers incorporated with thermoelectric modules. Firstly, the characteristics of the modules themselves are evaluated with respect to the applied DC power. Then, the modules-based heat exchangers with an amplification apparatus to enhance cooling effects are designed and developed. The cooling performance of the proposed heat exchangers is experimentally investigated with respect to the magnitude and pattern of input DC power, along with cooling liquids. The results denote that the heat exchangers using thermoelectric modules can be effectively used in the field of the various cooling system.

  • PDF

밀폐유도용해로 제조한 CoSb3-yTey의 열전특성 (Thermoelectric Properties of CoSb3-yTey Prepared by Encapsulated Induction Melting)

  • 김미정;심우섭;어순철;김일호
    • 한국재료학회지
    • /
    • 제16권7호
    • /
    • pp.412-415
    • /
    • 2006
  • Te-doped $CoSb_3$ was prepared by the encapsulated induction melting, and its doping effects on the thermoelectric properties were investigated. Single phase ${\delta}-CoSb_3$ was successfully obtained by the subsequent annealing at 773 K for 24 hrs. Tellurium atoms acted as electron donors by substituting antimony atoms. Thermoelectric properties were remarkably improved by the appropriate doping. Dimensionless figure of merit was obtained to be 0.83 at 700K for the $CoSb_{2.8}Te_{0.2}$ specimen.