DOI QR코드

DOI QR Code

A Study on Performance of Thermoelectric Air-Cooling System in Parallel Flow

평행유동에서 공랭식 열전모듈 냉각시스템의 성능에 관한 연구

  • 강상우 (한국과학기술연구원 에너지메카닉스센터) ;
  • 신재훈 (한국과학기술원 기계공학과) ;
  • 한훈식 (한국과학기술원 기계공학과) ;
  • 김서영 (한국과학기술연구원 에너지메카닉스센터)
  • Received : 2011.02.25
  • Accepted : 2011.05.09
  • Published : 2011.06.10

Abstract

Experimental and theoretical studies on cooling performance of two-channel thermoelectric air-cooling system in parallel flow are conducted. The effects of operating temperature to physical properties of thermoelectric module (TEM) are experimentally examined and used in the analysis of an air-cooling system considering thermal network and energy balance. The theoretical predicted temperature variation and cooling capacity are in good agreement with measured data, thereby validating analytic model. The heat absorbed rate increases with increasing the voltage input and decreasing thermal resistance of the system. The power consumption of TEM is linearly proportional to mean temperature differences due to variations of the physical properties on operation temperature of TEM. Furthermore thermal resistance of hot side has greater effects on cooling performance than that of cold side.

Keywords

References

  1. Riffat, S. B. and Ma, X., 2007, Thermoelectrics : a review of present and potential applications, Applied Thermal Engineering, Vol. 23, pp. 915-935.
  2. Sofrata, H., 1995, Heat rejection alternatives for thermoelectric refrigerators, Energy Conversion and Management, Vol. 37, pp. 269-280.
  3. Xu, X., Dessel, S. T. and Messac, A., 2007, Study of the performance of thermoelectric modules for use in active building envelopes, Build and Environment, Vol. 42 pp. 1489-1502. https://doi.org/10.1016/j.buildenv.2005.12.021
  4. Chen, L., Sun, F. adn Wu, C., 2005, Thermoelectric- generator with linear phenomenological heat-transfer law, Applied Energy, Vol. 81, pp. 358-364. https://doi.org/10.1016/j.apenergy.2004.09.011
  5. Chang, Y. W., Chang, C. C., Ke, M. T., and Chen, S. L., 2009, Thermoelectric air-cooling module for electronic devices, Applied Thermal Engineering, Vol. 29, pp. 2731-2737. https://doi.org/10.1016/j.applthermaleng.2009.01.004
  6. Lineykin, S. and Ben-Yaakov, S., 2007, Modeling and analysis of thermoelectric modules, I IEEE Transaction on Industry Application, Vol. 43, pp. 505-512. https://doi.org/10.1109/TIA.2006.889813
  7. Lineykin, S. and Ben-Yaakov, S., 2007, Userfriendly and intuitive graphical approach to the design of thermoelectric cooling systems, Int. J. Refrigeration, Vol. 30, pp. 798-804. https://doi.org/10.1016/j.ijrefrig.2006.12.004
  8. Min, G., Rowe, D. M., and Kontostavlakis, K., 2004, Thermoelectric figure-of-merit under large temperature differences, J. Physics, Vol. 37, pp. 1301-1304.
  9. Gorodetskiy, S. M., 1999, Determination of TE module parameters, Proceedings of the 18th Int. Conference on Thermoelectrics, pp. 266- 269.
  10. Solomon, M., 1998, Determination of TE module parameters, Proceedings of the 18th Int. Conference on Thermoelectrics, pp. 519-524.
  11. Xuan, X. C., 2002, Optimum design of a thermoelectric device, Semiconductor Science and Technology, Vol. 17, pp. 114-119. https://doi.org/10.1088/0268-1242/17/2/304
  12. Attey, G. S., 1998, Enhanced thermoelectric refrigeration system COP through low thermal impedance liquid heat transfer system, Proceedings of the 18th Int. Conference on Thermoelectrics, pp. 519-524.
  13. Haung, B. J., Chin, C. J. and Duang, C. L., 2000, A design method of thermoelectric cooler, Int. J. Refrigeration, Vol. 23, pp. 208-218. https://doi.org/10.1016/S0140-7007(99)00046-8
  14. Yamanish, M., 1996, A new approach to optimum design in thermoelectric cooling system, J. Appied Physics, Vol. 80, pp. 5494-5512. https://doi.org/10.1063/1.362740
  15. Chein, R. and Chen, Y., 2005, Performances of thermoelectric cooler integrated with microchannnel heat sinks, Int. J. Refrigeration, Vol. 28, pp. 829-838.
  16. Lee, K. H. and Kim, O. J., 2007, Analysis on the cooling performance of the thermoelectric micro-cooler, Int. J. Heat Mass Transfer, Vol. 50, pp. 1982-1992. https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.037
  17. Luo, J., Chen, L., Sun, F., and Wu, C., 2003, Optimum allocation of heat transfer surface area for cooling load and COP optimization of a thermoelectric refrigerator, Energy Convertsion and Management, Vol. 44, pp. 3197-3206. https://doi.org/10.1016/S0196-8904(03)00107-9
  18. Astrain, D., Vian, J. G. and Albizua, J., 2005, Computational model for refrigerators based on Peltier effect application, Applied Thermal Engineering, Vol. 25, pp. 3149-3162. https://doi.org/10.1016/j.applthermaleng.2005.04.003
  19. Saini, M. and Webb, R. L., 2002, Heat rejection limits of air cooled plate fin heat sinks for computer cooling, IEEE Transactions on Components and Packaging Technologies, Vol. 26, pp. 71-79.

Cited by

  1. Optimal Design of a Plate-Fin Heat Sink with Slip Flow vol.32, pp.2, 2015, https://doi.org/10.7736/KSPE.2015.32.2.219