• Title/Summary/Keyword: thermodynamic parameters

Search Result 495, Processing Time 0.03 seconds

Evaluation of Adsorption Characteristics of 2-Picoline onto Sylopute (실로퓨트에 대한 2-피콜린의 흡착 특성 평가)

  • Yang, Ji-Won;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.210-218
    • /
    • 2019
  • Batch experiment studies were carried out on the adsorption of the major tar compound, 2-picoline, derived from the plant cell cultures of Taxus chinensis, using Sylopute while varying parameters such as initial 2-picoline concentration, contact time and adsorption temperature. The experimental data were fitted to the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. Comparison of results revealed that the Langmuir isotherm model could account for the adsorption isotherm data with the highest accuracy among the four isotherm models considered. From the analysis of adsorption isotherms, it was found that adsorption capacity decreased with increasing temperature and the adsorption of 2-picoline onto Sylopute was favorable. The kinetic data were well described by the pseudo-second-order kinetic model, while intraparticle diffusion and boundary layer diffusion did not play a dominated role in 2-picoline adsorption according to the intraparticle diffusion model. Thermodynamic parameters revealed the exothermic, irreversible and non-spontaneous nature of adsorption. The isosteric heat of adsorption decreased as surface loading ($q_e$) increased, indicating a heterogeneous surface.

Anthocyanins Extracted from Grapes as Green Corrosion Inhibitors for Tin Metal in Citric Acid Solution

  • Mohamed, Mervate Mohamed;Alsaiari, Raiedhah;Al-Qadri, Fatima A.;Shedaiwa, Iman Mohammad;Alsaiari, Mabkhoot;Musa, Esraa Mohamed;Alkorbi, Faeza;Alkorbi, Ali S.
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.381-389
    • /
    • 2022
  • Cyclic Voltammetry and weight loss measurements were used to investigate corrosion prevention of tin in a 0.5M citric acid solution containing Anthocyanins extracted from grapes at various concentrations and temperatures. Results showed that the investigated chemicals, Anthocyanins extracted from grapes, performed well as tin corrosion inhibitors in 0.5M citric acid. Increasing the concentration of Anthocyanins increased their corrosion inhibition efficiencies. When the temperature dropped, their inhibition efficiencies, increased indicating that higher temperature tin dissolution predominated the adsorption of Anthocyanins at the surface of tin metal. When inhibitor concentrations were increased, their inhibition efficiencies were also increased. These results revealed that corrosion of tin metal was inhibited by a mixed type of adsorption on the metal surface. The adsorption isotherm of Langmuir governed the adsorption of Anthocyanins. Thermodynamic parameters such as the enthalpy of adsorption, the entropy of adsorption, and Gibbs free energy and kinetic parameters such as activation energy, enthalpy of activation, and entropy of activation were computed and discussed in this study.

Adsorption Characteristics Analysis of Trimethoprim in Aqueous Solution by Magnetic Activated Carbon Prepared from Waste Citrus Peel Using Box-Behnken Design (Box-Behnken Design을 이용한 수용액 중의 Trimethoprim에 대한 폐감귤박 자성활성탄의 흡착 특성)

  • Lee, Chang-Han;Lee, Min-Gyu;Hu, Chul-Goo;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.31 no.8
    • /
    • pp.691-706
    • /
    • 2022
  • Magnetic activated carbon was prepared by adding a magnetic material to activated carbon that had been prepared from waste citrus peel in Jeju. The adsorption characteristics of an aqueous solution of the antibiotic trimethoprim (TMP) were investigated using the magnetic activated carbon, as an adsorbent, and response surface methodology (RSM). Batch experiments were carried out according to a four-factor Box-Behnken experimental design affecting TMP adsorption with their input parameters (TMP concentration: 50~150 mg/L; pH: 4~10; temperature: 293~323 K; adsorbent dose: 0.05~0.15 g). The significance of the independent variables and their interaction was assessed by ANOVA and t-test statistical techniques. Statistical results showed that TMP concentration was the most effective parameter, compared with others. The adsorption process can be well described by the pseudo-second-order kinetic model. The experimental isotherm data followed the Langmuir isotherm model. The maximum adsorption capacities of TMP, estimated with the Langmuir isotherm model were 115.9-130.5 mg/g at 293-323 K. Also, both the thermodynamic parameters, ΔH and ΔG, have both positive values, indicating that the adsorption of TMP by the magnetic activated carbon is an endothermic reaction and proceeds via an involuntary process.

Kinetic Study for Hygroscopic Behavior of Freeze Dried Soy Paste Powder (동결건조 분말된장의 흡습 거동에 대한 속도론적 연구)

  • Hwang, Eung-Soo;Lee, Chul-Won;Yu, Ju-Hyun;Lee, Shin-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.231-238
    • /
    • 1987
  • Two kinds of soy pastes with different colors (reddish brown and yellowish white) were dehydrated by freeze drying in powder form. Hygroscopic behaviors of powdered soy pastes were investigated under the conditions of various water acitivities (0.11-0.88) and three different temperatures (25,40 and $50^{\circ}C$), and presented a kinetic and thermodynamic interpretatons in the view point of qualities and storage stability. Moisture absorption isotherms of powdered soy pastes were of type II according with BET classification and can be described by the Henderson's empirical equation. The safe storage moisture levels calculated by the Laurie's equation were ranging from 5.5 to 3.98% dry basis with oaring temperatures. The moisture absorption process for powdered soy paste followed the Ist order kinetic in the difference of equilibrium moisture content and arbitrary moisture content and the initial step was characterized by very fast absorption of moisture. The change of, dispersion capacity and color difference for powdered soy paste were extremely dependent upon water activity under the storage and the maximum stability was found at safe storage moisture levels. Also, the variation of thermodynamic parameters with moisture content was significant at safe storage moisture content levels and suggested d the considerable correspondence to storage stability of powdered soy paste.

  • PDF

Effect of Salts and Isomeric Butanols on the Mixed Micellar Properties of Cetylpyridinium Chloride with Triton X-100 (Cetylpyridinium Chloride와 Triton X-100의 혼합 미셀화에 미치는 염 및 부탄올 이성질체들의 효과)

  • Chung, Jong-Jae;Lee, Sang-Hak;Kim, Yung-Cheol;Lee, Byung-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.968-973
    • /
    • 1998
  • The critical micelle concentrations($CMC^*$) of the mixed surfactant systems of cationic surfactant cetylpyridinium chloride(CPC) and nonionic surfactant Triton X-100(TX-100) in aqueous solutions of salts(KCl and $Na_2CO_3$) and isomeric butanols(tert-butanol, iso-butanol and n-butanol) were determined by UV spectroscopy method. The various thermodynamic values in aqueous solutions of salts and isomeric butanols were compared with the values in pure water, calculated by means of the equation derived from the pseudo-phase separation model. Thermodynamic parameters($X_1$, $\beta$, ${\gamma}i$, $ai^M$, $C_i$ and ${\Delta}H_{mix}$) were found to have great effects of salts and isomeric butanols on the mixed micellization of CPC/TX-100 mixtures, and also in good agreements with the nonideal mixed micelle model. They showed all negative deviations from the ideal mixed micellar behavior.

  • PDF

A Thermodynamic Study on Thermochromism of Blue Dye Systems (Blue 계열 염료의 열변색 현상에 관한 열역학적 연구)

  • Kim, Jae-Uk;Ji, Myoung-Jin;Cha, Byung-Kwan;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.500-505
    • /
    • 2010
  • Two different dyes containing the same molecular weight but different chemical structure have been utilized for the study of thermodynamic parameters. In this study, {3-(4-(diethylamino)phenyl)-3-(1-ethyl-2-methyl-1H-indol-3-yl)isobenzofuran-1(3H)-one} (Blue 502) and {3-(4-(diethylamino)-2-methylphenyl)-3-(1,2-dimethyl-1H-indol-3-yl)isobenzofuran-1(3H)-one} (Blue 402) were used. It has been performed by measuring UV spectra of the two dyes. In general, the blue shift has been observed from both dyes in higher carbon number alcohol solvents. Interestingly, Blue 502 showed higher stability than Blue 402 in the same conditions used in this study. And, the equilibrium constants (0.9~1.0) of the dyes depending upon temperature change were also calculated using UV absorbance. The standard enthalpy calculated from equilibrium constants and molar absorptivity($\varepsilon$) are 10.94 kJ/mol in Blue 402 and 9.010 kJ/mol in Blue 502, respectively.

Production of Activated Carbon from Waste Walnut Shell Using Phosphoric Acid and Its Adsorption Characteristics for Heavy Metal Ion (인산활성화제에 의한 폐호도껍질을 원료로 한 활성탄제조 및 이의 중금속 이온 흡착특성)

  • Lee Go-Eun;Ahn Ju-Hyun;Kim Dong-Su
    • Resources Recycling
    • /
    • v.12 no.3
    • /
    • pp.13-24
    • /
    • 2003
  • The production characteristics of activated carbon from waste walnut shell have been investigated by taking activation temperature, activation time, amount of activating agent, and kind of activating agent as the major influential factors. The adsorption capacity of the activated carbon which was produced using phosphoric acid as the activating agent increased with activation temperature and showed its greatest value at about $550^{\circ}C$. Yield for activated carbon was observed to decrease continuously as the activation temperature was raised. The optimal activation time for the highest adsorption capacity was found to be about 2 hr, and as the activation time increased the yield for activated carbon was showed to decrease continuously. The increase in the amount of activating agent resulted in the increase of the yield for activated carbon, however, excessive amount of activating agent deteriorated its adsorption capacity reversely. The variations of the microstructure of activated carbon observed by SEM with several influential factors, correlated very well with its changes in the adsorbability with the same factors and the kind of activating agent was found to play an important role in the determination of the adsorption capacity of activated carbon. To investigate the adsorption characteristics of the produced activated carbon, the adsorption reactions of $Cu^{2+}$ ion were examined using the produced activated carbon as the adsorbent. In general, the kinetics of the adsorption of $Cu^{2+}$ ion was observed to follow a 2nd-order reaction and the rate constant for adsorption reaction increased as the initial concentration of adsorbate was diminished. The equilibrium adsorption of $Cu^{2+}$ was explained well with Freundlich model and its adsorption reaction was found to be endothermic. The activation energy for adsorption was calculated to be 13.07 kcal/mol, which implied that the adsorption reaction was very irreversible, and several thermodynamic parameters of adsorption reaction were estimated using van't. Hoff equation and thermodynamic relationships.

MICROSTRUCTURE AND ELECTROCHEMICAL BEHAVIORS OF EQUIATOMIC TiMoVCrZr AND Ti-RICH TiMoVCrZr HIGH-ENTROPY ALLOYS FOR METALLIC BIOMATERIALS

  • HOCHEOL SONG;SEONGI LEE;KWANGMIN LEE
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.4
    • /
    • pp.1317-1322
    • /
    • 2020
  • The present study investigated various thermodynamic parameters, microstructures and electrochemical behaviors of TiMoVCrZr and Ti-rich TiMoVCrZr high-entropy alloys (HEAs) prepared by vacuum arc remelting. The microstructures of the alloys were analyzed using X-ray diffraction (XRD) analysis, field emission scanning electron microscopy (FE-SEM), and potentiodynamic polarization tests. The determined thermodynamic values of the Ω-parameter and the atomic size difference (δ) for the HEAs were determined to be in the range of Ω ≥ 1.1, and δ ≤ 6.6% with valance electron configuration (VEC) ≤ 5.0, suggesting the HEAs were effective at forming solid solutions. XRD patterns of the equiatomic Ti20Mo20V20Cr20Zr20 HEA revealed four phases consisting of the body centered cubic1 (BCC1), BCC2, hexagonal close-packed (HCP), and intermetallic compound Cr2Zr phases. Three phases were observed in the XRD patterns of Ti-rich Ti40Mo15V15Cr15Zr15 (BCC, HCP, and Cr2Zr) and a single BCC phase was observed in Ti-rich Ti60Mo10V10Cr10Zr10 HEAs. The backscattered-electron (BSE) images on the equiatomic Ti20Mo20V20Cr20Zr20 HEA revealed BCC and HCP phases with Cr2Zr precipitates, suggesting precipitation from the HCP solid solution during the cooling. The micro-segregation of Ti-rich Ti60Mo10V10C10Zr10 HEAs appeared to decrease remarkably. The alloying elements in the HEAs were locally present and no phase changes occurred even after additional HIP treatment. The lowest current density obtained in the polarization potential test of Ti-rich Ti40Mo15V15Cr15Zr15 HEA was 7.12×10-4 mA/cm2 was obtained. The studied TiMoVCrZr HEAs showed improved corrosion characteristics as compared to currently available joint replacement material such as ASTM F75 alloy.

Adsorption Characteristics of Dimetridazole Antibiotics on Activated Carbon Prepared from Agricultural Waste Citrus Peel (폐감귤박 활성탄을 이용한 항생제 Dimetridazole의 흡착특성)

  • Lee, Chang-Han;Kam, Sang-Kyu;Lee, Min-Gyu
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.798-806
    • /
    • 2017
  • A activated carbon (WCAC, waste citrus activated carbon) prepared from an agricultural waste citrus peel material generated in Jeju was utilized for the removal of dimetridazole (DMZ) antibiotics in aqueous solution. The adsorption of DMZ on WCAC was investigated with the change of various parameters such as contact time, dosage of WCAC, particle size of WCAC, temperature, pH, and DMZ concentration. The DMZ adsorption capacity increased with increasing temperature and decreasing particle size. Also it was decreased at less than pH 4 but sustained almost constantly at pH 4 or greater. Isotherm parameters were determined from the Langmuir, Freundlich, Redlich-Peterson and Duinin-Radushkevich (D-R) isotherm models. The isotherm data were best described by the Redlich-Peterson isotherm model. And the adsorption kinetics can be successfully fitted to the pseudo-second-order kinetic model. The results of the intra-particle diffusion model suggested that film diffusion and intra-particle diffusion were occurred simultaneously during the adsorption process. Meanwhile, the thermodynamic parameters indicated that the adsorption reaction of DMZ on WCAC was an endothermic and spontaneous process. The experimental results showed that WCAC is a promising and cheap adsorbent for the removal of DMZ antibiotics.

Near-IR Spectroscopic Studies of the Hydrogen Bonding Between Thiopropionamide and N,N-Dimethylalkylamide in Carbon Tetrachloride (사염화탄소 중에서 Thiopropionamide와 N,N-Dimethylalkylamide사이의 수소결합에 관한 분광학적 연구)

  • Byung-Chul Kim;Chang-Ju Yoon;Kyuseok Song;Young Sang Choi
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.156-163
    • /
    • 1989
  • The $ν_a+amide II$ combination band of thiopropionamide has been recorded for investigation of Hydrogen bonding between thiopropionamide (TPA) and N,N-dimethylalkylamide (DMF, DMA and DMP) in carbon tetrachloride over the range of $5^{\circ}$ to $55^{\circ}$. The combination band of monomeric TPA and hydrogen-bonded TPA can be resolved by Lorentzian-Gaussian product function into monomeric TPA and hydrogen-bonded TPA with amides. The association constants ($K_1$) for the hydrogen-bonded TPA were calculated by the concentrations of the monomeric TPA and the hydrogen-bonded TPA obtained from the computer resolved absorption bands. Thermodynamic parameters for the Hydrogen bonding have been evaluated by the analysis of the temperature dependent spectra. The ${\Delta}$$H^{\circ}$ of hydrogen-bonded TPA with DMF, DMA and DMP have been found to be-12.5, -13.5 and -14.1 kJ/mol, respectively. The corresponding ${\Delta}$$S^{\circ}$for the above system were -15.2, -17.9 and -22.3 J/mol${\cdot}$deg, respectively.

  • PDF