DOI QR코드

DOI QR Code

Adsorption Characteristics Analysis of Trimethoprim in Aqueous Solution by Magnetic Activated Carbon Prepared from Waste Citrus Peel Using Box-Behnken Design

Box-Behnken Design을 이용한 수용액 중의 Trimethoprim에 대한 폐감귤박 자성활성탄의 흡착 특성

  • Lee, Chang-Han (Department of Environmental Adminstration, Catholic University of Pusan) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University) ;
  • Hu, Chul-Goo (Department of Environmental Engineering, Jeju National University) ;
  • Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University)
  • 이창한 (부산가톨릭대학교 환경행정학과) ;
  • 이민규 (부경대학교 화학공학과) ;
  • 허철구 (제주대학교 환경공학과) ;
  • 감상규 (제주대학교 환경공학과)
  • Received : 2022.06.20
  • Accepted : 2022.07.25
  • Published : 2022.08.31

Abstract

Magnetic activated carbon was prepared by adding a magnetic material to activated carbon that had been prepared from waste citrus peel in Jeju. The adsorption characteristics of an aqueous solution of the antibiotic trimethoprim (TMP) were investigated using the magnetic activated carbon, as an adsorbent, and response surface methodology (RSM). Batch experiments were carried out according to a four-factor Box-Behnken experimental design affecting TMP adsorption with their input parameters (TMP concentration: 50~150 mg/L; pH: 4~10; temperature: 293~323 K; adsorbent dose: 0.05~0.15 g). The significance of the independent variables and their interaction was assessed by ANOVA and t-test statistical techniques. Statistical results showed that TMP concentration was the most effective parameter, compared with others. The adsorption process can be well described by the pseudo-second-order kinetic model. The experimental isotherm data followed the Langmuir isotherm model. The maximum adsorption capacities of TMP, estimated with the Langmuir isotherm model were 115.9-130.5 mg/g at 293-323 K. Also, both the thermodynamic parameters, ΔH and ΔG, have both positive values, indicating that the adsorption of TMP by the magnetic activated carbon is an endothermic reaction and proceeds via an involuntary process.

Keywords

Acknowledgement

이 논문은 2021년도 제주대학교 교원성과지원사업에 의하여 연구되었음.

References

  1. Al-Rifai, J. H., Khabbaz, H., Sdhafer, A. I., 2011, Removal of pharmaceuticals and endocrine disrupting compounds in a water recycling process using reverse osmosis system, Sep. Purif. Technol., 77, 60-67. https://doi.org/10.1016/j.seppur.2010.11.020
  2. Banerjee, S. S., Chen, D. H., 2007, Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent, J. Hazard. Mater., 147, 792-799. https://doi.org/10.1016/j.jhazmat.2007.01.079
  3. Bekci, Z., Seki, Y., Yurdakoc, M. K, 2006, Equilibrium studies for trimethoprim adsorption on montmorillonite KSF, J. Hazard. Mater., B133, 233-242. https://doi.org/10.1016/j.jhazmat.2005.10.029
  4. Bingol, D., Veli, S., Zor, S., Ozdemir, U., 2012, Analysis of adsorption of reactive azo dye onto CuCl2 doped polyaniline using Box-Behnken design approach, Synth. Met., 162, 1566-1571. https://doi.org/10.1016/j.synthmet.2012.07.011
  5. Chang, C. F., Lin, P. H., Hall, W., 2006, Aluminum-type superparamagnetic adsorbents: synthesis and application on fluoride removal, Colloids and Surf. A, 280, 194-202. https://doi.org/10.1016/j.colsurfa.2006.02.011
  6. Ciriaco, L., Anjo, C., Correia, J., Pacheco, M. J., Lopes, A., 2009, Electrochemical degradation of Ibuprofen on Ti/Pt/PbO2 and Si/BDD electrodes, Electrochim. Acta, 54, 1464-1472. https://doi.org/10.1016/j.electacta.2008.09.022
  7. Dantas, R. F., Contreras, S., Sans, C., Esplugas, S., 2008, Sulfamethoxazole abatement by means of ozonation, J. Hazard. Mater., 150, 790-794. https://doi.org/10.1016/j.jhazmat.2007.05.034
  8. Dias, M., Alvim-Ferraz, M. C. M., Almeida, M. F., Rivera-Utrilla, J., Sanchez-Polo, M., 2007, Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review, J. Environ. Manage., 85, 833-846. https://doi.org/10.1016/j.jenvman.2007.07.031
  9. Diaz-Cruz, M. S., Lopez de Alda, M. J., Barcelo, D., 2003, Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge, Trends Anal. Chem., 22, 340-351. https://doi.org/10.1016/S0165-9936(03)00603-4
  10. Doll, T, E., Frimmel, F. H., 2004, Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials-determination of intermediates and reaction pathways, Water Res., 38, 955-964. https://doi.org/10.1016/j.watres.2003.11.009
  11. Dominguez-Vargas, J. R., Carrillo-Perez, V., Gonzalez-Montero, T., Cuerda-Correa, E. M., 2012, Removal of trimethoprim by a low-cost adsorbent: influence of operation conditions, Water Air Soil Pollut., 223, 4577-4588. https://doi.org/10.1007/s11270-012-1219-0
  12. Flores-Cano, J. V., Sanchez-Polo, M., Messoud, J., Ocampo-Perez, R., Rivera-Utrilla, J., 2016, Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells, J. Environ. Manage., 169, 116-125. https://doi.org/10.1016/j.jenvman.2015.12.001
  13. Freundlich, H. M. F., 1906, Over the adsorption in solution, J. Phys. Chem., 57, 385-470.
  14. Gul, P., Ahmad, K. S., Ali, D., 2021, Activated carbon processed from Citrus sinensis: Synthesis, characterization and application for adsorption-based separation of toxic pesticides from soils, Sep. Sci. Technol., 56, 1810071.
  15. Gupta, V. K., Gupta, B., Rastogi, A., Agarwal, S., Nayak, A., 2011, A Comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye-Acid Blue 113, J. Hazard. Mater., 186, 891-901. https://doi.org/10.1016/j.jhazmat.2010.11.091
  16. Ho, Y. S., McKay, G., 1998, The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat, Can. J. Chem. Eng., 76, 822-827. https://doi.org/10.1002/cjce.5450760419
  17. Kam, S. K., Kang, K. H., Lee, M. G., 2017a, Characteristics of activated carbon prepared from waste citrus peel by KOH activation, Appl. Chem. Eng., 28(6), 649-654.
  18. Kam, S. K., Kang, K. H., Lee, M. G., 2017b, Adsorption characteristics of acetone, benzene, and methylmercaptan by activated carbon prepared from waste citrus peel, Appl. Chem. Eng., 28(6), 663-669.
  19. Kam, S. K., Lee, M. G., 2018. Adsorption characteristics of 2,4-dichlorophenol by magnetic activated carbon prepared from waste citrus peel, Applied Chem. Eng., 29(4), 388-394.
  20. Kemper, N., 2008, Veterinary antibiotics in the aquatic and terrestrial environment, Ecol. Ind., 8, 1-13. https://doi.org/10.1016/j.ecolind.2007.06.002
  21. Kim, S. H., Shon, H. K., Ngo, H. H., 2010, Adsorption characteristics of antibiotics trimethoprim on powdered and granular activated carbon, J. Ind. Eng. Chem., 16, 344-349. https://doi.org/10.1016/j.jiec.2009.09.061
  22. Klavarioti, M., Mantzavinos, D., Kassinos, D., 2009, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation process-a review, Environ. Int., 35, 402-417. https://doi.org/10.1016/j.envint.2008.07.009
  23. Kunwar, P. S., Arun, K. S., Uday, V. S., Verma P., 2012, Optimizing removal of ibuprofen from water by magnetic nanocomposite using Box-Behnken design, Environ. Sci. Pollut. Res., 19, 724-738. https://doi.org/10.1007/s11356-011-0611-4
  24. Lagergren, S., 1898, About the theory of so-called adsorption of soluble substances, Kunglia Svenska Vetenskapsa-kademiens Handlingar, 24, 1-39.
  25. Langmuir, I., 1918, The adsorption of gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40, 1361-1403. https://doi.org/10.1021/ja02242a004
  26. Martinez, M. L., Torres, M. M., Guzman, C. A., Maestri, D. M., 2006, Preparation and characteristics of activated carbon from olive stones and walnut shells, Ind. Crop Prod.. 23, 23-28. https://doi.org/10.1016/j.indcrop.2005.03.001
  27. Mendez-Arriagad, F., Torres-Palmaa, R. A., Petriera, C., Esplugasd, S., Gimenezd, J., Eulgarin, C., 2008, Ultrasonic treatment of water contaminated with ibuprofen, Water Res., 42, 4243-4248. https://doi.org/10.1016/j.watres.2008.05.033
  28. Mohan, D. Sarswat, A., Singh, V. K., Alexandre-Franco, M., Pittman Jr., C. U., 2011, Development of magnetic activated carbon from almond shells for trinitrophenol removal from water, Chem. Eng. J., 172, 1111-1125. https://doi.org/10.1016/j.cej.2011.06.054
  29. Molu, Z. B., Yurdakoc, K., 2010, Preparation and characterization of aluminum pillared K10 and KSF for adsorption of trimethoprim, Microporous Mesoporous Mater., 127, 50-60. https://doi.org/10.1016/j.micromeso.2009.06.027
  30. Muthanna, J. A., Samar, K. T., 2013, Microporous activated carbon from Siris seed pods by microwave-induced KOH activation for metronidazole adsorption, J. Anal. Appl. Pyrolysis, 99, 101-109. https://doi.org/10.1016/j.jaap.2012.10.019
  31. Namasivayam, C., Kavitha, D., 2002, Removal of congo red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste, Dyes Pigm., 54, 47-58. https://doi.org/10.1016/S0143-7208(02)00025-6
  32. Nielsen, L., Bandosz, T. J., 2016, Analysis of sulfamethoxazole and trimethoprim adsorption on sewage sludge and fish waste derived adsorbents, Microporous Mesoporous Mater., 220, 58-72. https://doi.org/10.1016/j.micromeso.2015.08.025
  33. Park, H. E., Row, K. H., 2013, Optimization of synthesis condition of monolithic sorbent using rsponse surface methodology, Appl. Chem. Eng., 24(3), 299-304.
  34. Pedrouzo, M., Borrull, F., Pocurull, E., Marce, R. M., 2011, Presence of pharmaceuticals and hormones in waters from sewage treatment plants, Water Air Soil Pollut., 217, 267-281. https://doi.org/10.1007/s11270-010-0585-8
  35. Rahman, I. A., Saad, B., Shaidan, S., Sya Rizal, E. S., 2005, Adsorption characteristics of malachite green on activated carbon derived from rice husks produced by chemical-thermal process, Bioresour. Technol., 96, 1578-1583. https://doi.org/10.1016/j.biortech.2004.12.015
  36. Rossner, A., Snyder, S. A., Knappe, D. R. U., 2009, Removal of emerging contaminants of concern by alternative adsorbents, Water Res., 43, 3787-3796. https://doi.org/10.1016/j.watres.2009.06.009
  37. Salihi, E. C., Mahramanhoglu, M., 2014, Equilibrium and kinetic adsorption of drugs on bentonite: Presence of surface active agents effect, Appl. Clay Sci., 101, 381-389. https://doi.org/10.1016/j.clay.2014.06.015
  38. Schwickardi, M., Olejnik, S., Salabas, E. L., Schmidt, W., Schuth, F., 2006, Scalable synthesis of activated carbon with supermagnetic properties, Chem. Comm., 38, 3987-3989.
  39. Siddique, A., Nayak, A. K., Singh, J., 2020, Synthesis of FeCl3-activated carbon derived from waste Citrus limetta peels for removal of fluoride: An eco-friendly approach for the treatment of groundwater and bio-waste collectively, Groundwater Sust. Develop., 10, 100339.
  40. Sych, N. V., Kartel, N. T., Tsyba, N. N., Strelko, V. V., 2006, Effect of combined activation on the preparation of high porous active carbons from granulated post-consumer polyethyleneterephthalate, Appl. Surf. Sci., 252, 8062-8066. https://doi.org/10.1016/j.apsusc.2005.10.009
  41. Tekin, H., Bilkay, O., Ataberk, S. S., Balta, T. H., Ceribasi, I. H., Sanin, F. D., 2006, Use of fenton oxidation to improve the biodegradability of a pharmaceutical wastewater, J. Hazard. Mater., 136, 258-265. https://doi.org/10.1016/j.jhazmat.2005.12.012
  42. Ternes, T. A., Meisenheimer, M., McDowell, D., Sacher, F., Brauch, H. J., Haist-Gulde, B., Preuss, G., Wilme, U., Zulei-Seibert, N., 2002, Removal of pharmaceuticals during drinking water treatment, J. Environ. Sci. Technol., 36, 3855-3863. https://doi.org/10.1021/es015757k
  43. Vieno, N. M., Harkki, H., Tuhkanen, T., Kronberg, L., 2007, Occurrence of pharmaceuticals in river water and their elimination in a pilotscale drinking water treatment plant, J. Environ. Sci. Technol., 41, 5077-5084. https://doi.org/10.1021/es062720x
  44. Wan, J., Deng, H. P., Shi, J., Zhou, L., Su, T., 2014, Synthesized magnetic manganese ferrite nanoparticles on activated carbon for sulfamethoxazole removal, Clean-Soil, Air, Water, 42, 1199-1207. https://doi.org/10.1002/clen.201300432
  45. Webb, S., Ternes, T., Gibert, M., Olejniczak, K., 2003, Indirect human exposure to pharmaceuticals via drinking water., Toxicol. Let., 142, 157-167. https://doi.org/10.1016/S0378-4274(03)00071-7
  46. Wong, K. T., Yoon, Y., Snyder, S. A., Jang, M., 2016, Phenyl-functionalized magnetic palmbased powdered activated carbon for the effective removal of selected pharmaceutical and endocrine-disruptive compounds, Chemosphere, 152, 71-80. https://doi.org/10.1016/j.chemosphere.2016.02.090