Browse > Article
http://dx.doi.org/10.5322/JESI.2022.31.8.691

Adsorption Characteristics Analysis of Trimethoprim in Aqueous Solution by Magnetic Activated Carbon Prepared from Waste Citrus Peel Using Box-Behnken Design  

Lee, Chang-Han (Department of Environmental Adminstration, Catholic University of Pusan)
Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
Hu, Chul-Goo (Department of Environmental Engineering, Jeju National University)
Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University)
Publication Information
Journal of Environmental Science International / v.31, no.8, 2022 , pp. 691-706 More about this Journal
Abstract
Magnetic activated carbon was prepared by adding a magnetic material to activated carbon that had been prepared from waste citrus peel in Jeju. The adsorption characteristics of an aqueous solution of the antibiotic trimethoprim (TMP) were investigated using the magnetic activated carbon, as an adsorbent, and response surface methodology (RSM). Batch experiments were carried out according to a four-factor Box-Behnken experimental design affecting TMP adsorption with their input parameters (TMP concentration: 50~150 mg/L; pH: 4~10; temperature: 293~323 K; adsorbent dose: 0.05~0.15 g). The significance of the independent variables and their interaction was assessed by ANOVA and t-test statistical techniques. Statistical results showed that TMP concentration was the most effective parameter, compared with others. The adsorption process can be well described by the pseudo-second-order kinetic model. The experimental isotherm data followed the Langmuir isotherm model. The maximum adsorption capacities of TMP, estimated with the Langmuir isotherm model were 115.9-130.5 mg/g at 293-323 K. Also, both the thermodynamic parameters, ΔH and ΔG, have both positive values, indicating that the adsorption of TMP by the magnetic activated carbon is an endothermic reaction and proceeds via an involuntary process.
Keywords
Adsorption; Trimethoprim; Magnetic activated carbon; Waste citrus peel; Box-Behnken design;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kam, S. K., Kang, K. H., Lee, M. G., 2017b, Adsorption characteristics of acetone, benzene, and methylmercaptan by activated carbon prepared from waste citrus peel, Appl. Chem. Eng., 28(6), 663-669.
2 Kunwar, P. S., Arun, K. S., Uday, V. S., Verma P., 2012, Optimizing removal of ibuprofen from water by magnetic nanocomposite using Box-Behnken design, Environ. Sci. Pollut. Res., 19, 724-738.   DOI
3 Banerjee, S. S., Chen, D. H., 2007, Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent, J. Hazard. Mater., 147, 792-799.   DOI
4 Flores-Cano, J. V., Sanchez-Polo, M., Messoud, J., Ocampo-Perez, R., Rivera-Utrilla, J., 2016, Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells, J. Environ. Manage., 169, 116-125.   DOI
5 Tekin, H., Bilkay, O., Ataberk, S. S., Balta, T. H., Ceribasi, I. H., Sanin, F. D., 2006, Use of fenton oxidation to improve the biodegradability of a pharmaceutical wastewater, J. Hazard. Mater., 136, 258-265.   DOI
6 Webb, S., Ternes, T., Gibert, M., Olejniczak, K., 2003, Indirect human exposure to pharmaceuticals via drinking water., Toxicol. Let., 142, 157-167.   DOI
7 Dias, M., Alvim-Ferraz, M. C. M., Almeida, M. F., Rivera-Utrilla, J., Sanchez-Polo, M., 2007, Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review, J. Environ. Manage., 85, 833-846.   DOI
8 Ciriaco, L., Anjo, C., Correia, J., Pacheco, M. J., Lopes, A., 2009, Electrochemical degradation of Ibuprofen on Ti/Pt/PbO2 and Si/BDD electrodes, Electrochim. Acta, 54, 1464-1472.   DOI
9 Namasivayam, C., Kavitha, D., 2002, Removal of congo red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste, Dyes Pigm., 54, 47-58.   DOI
10 Rahman, I. A., Saad, B., Shaidan, S., Sya Rizal, E. S., 2005, Adsorption characteristics of malachite green on activated carbon derived from rice husks produced by chemical-thermal process, Bioresour. Technol., 96, 1578-1583.   DOI
11 Dantas, R. F., Contreras, S., Sans, C., Esplugas, S., 2008, Sulfamethoxazole abatement by means of ozonation, J. Hazard. Mater., 150, 790-794.   DOI
12 Diaz-Cruz, M. S., Lopez de Alda, M. J., Barcelo, D., 2003, Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge, Trends Anal. Chem., 22, 340-351.   DOI
13 Doll, T, E., Frimmel, F. H., 2004, Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials-determination of intermediates and reaction pathways, Water Res., 38, 955-964.   DOI
14 Al-Rifai, J. H., Khabbaz, H., Sdhafer, A. I., 2011, Removal of pharmaceuticals and endocrine disrupting compounds in a water recycling process using reverse osmosis system, Sep. Purif. Technol., 77, 60-67.   DOI
15 Bekci, Z., Seki, Y., Yurdakoc, M. K, 2006, Equilibrium studies for trimethoprim adsorption on montmorillonite KSF, J. Hazard. Mater., B133, 233-242.   DOI
16 Martinez, M. L., Torres, M. M., Guzman, C. A., Maestri, D. M., 2006, Preparation and characteristics of activated carbon from olive stones and walnut shells, Ind. Crop Prod.. 23, 23-28.   DOI
17 Bingol, D., Veli, S., Zor, S., Ozdemir, U., 2012, Analysis of adsorption of reactive azo dye onto CuCl2 doped polyaniline using Box-Behnken design approach, Synth. Met., 162, 1566-1571.   DOI
18 Chang, C. F., Lin, P. H., Hall, W., 2006, Aluminum-type superparamagnetic adsorbents: synthesis and application on fluoride removal, Colloids and Surf. A, 280, 194-202.   DOI
19 Dominguez-Vargas, J. R., Carrillo-Perez, V., Gonzalez-Montero, T., Cuerda-Correa, E. M., 2012, Removal of trimethoprim by a low-cost adsorbent: influence of operation conditions, Water Air Soil Pollut., 223, 4577-4588.   DOI
20 Mendez-Arriagad, F., Torres-Palmaa, R. A., Petriera, C., Esplugasd, S., Gimenezd, J., Eulgarin, C., 2008, Ultrasonic treatment of water contaminated with ibuprofen, Water Res., 42, 4243-4248.   DOI
21 Mohan, D. Sarswat, A., Singh, V. K., Alexandre-Franco, M., Pittman Jr., C. U., 2011, Development of magnetic activated carbon from almond shells for trinitrophenol removal from water, Chem. Eng. J., 172, 1111-1125.   DOI
22 Molu, Z. B., Yurdakoc, K., 2010, Preparation and characterization of aluminum pillared K10 and KSF for adsorption of trimethoprim, Microporous Mesoporous Mater., 127, 50-60.   DOI
23 Langmuir, I., 1918, The adsorption of gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40, 1361-1403.   DOI
24 Muthanna, J. A., Samar, K. T., 2013, Microporous activated carbon from Siris seed pods by microwave-induced KOH activation for metronidazole adsorption, J. Anal. Appl. Pyrolysis, 99, 101-109.   DOI
25 Rossner, A., Snyder, S. A., Knappe, D. R. U., 2009, Removal of emerging contaminants of concern by alternative adsorbents, Water Res., 43, 3787-3796.   DOI
26 Nielsen, L., Bandosz, T. J., 2016, Analysis of sulfamethoxazole and trimethoprim adsorption on sewage sludge and fish waste derived adsorbents, Microporous Mesoporous Mater., 220, 58-72.   DOI
27 Park, H. E., Row, K. H., 2013, Optimization of synthesis condition of monolithic sorbent using rsponse surface methodology, Appl. Chem. Eng., 24(3), 299-304.
28 Pedrouzo, M., Borrull, F., Pocurull, E., Marce, R. M., 2011, Presence of pharmaceuticals and hormones in waters from sewage treatment plants, Water Air Soil Pollut., 217, 267-281.   DOI
29 Salihi, E. C., Mahramanhoglu, M., 2014, Equilibrium and kinetic adsorption of drugs on bentonite: Presence of surface active agents effect, Appl. Clay Sci., 101, 381-389.   DOI
30 Schwickardi, M., Olejnik, S., Salabas, E. L., Schmidt, W., Schuth, F., 2006, Scalable synthesis of activated carbon with supermagnetic properties, Chem. Comm., 38, 3987-3989.
31 Siddique, A., Nayak, A. K., Singh, J., 2020, Synthesis of FeCl3-activated carbon derived from waste Citrus limetta peels for removal of fluoride: An eco-friendly approach for the treatment of groundwater and bio-waste collectively, Groundwater Sust. Develop., 10, 100339.
32 Sych, N. V., Kartel, N. T., Tsyba, N. N., Strelko, V. V., 2006, Effect of combined activation on the preparation of high porous active carbons from granulated post-consumer polyethyleneterephthalate, Appl. Surf. Sci., 252, 8062-8066.   DOI
33 Vieno, N. M., Harkki, H., Tuhkanen, T., Kronberg, L., 2007, Occurrence of pharmaceuticals in river water and their elimination in a pilotscale drinking water treatment plant, J. Environ. Sci. Technol., 41, 5077-5084.   DOI
34 Freundlich, H. M. F., 1906, Over the adsorption in solution, J. Phys. Chem., 57, 385-470.
35 Wan, J., Deng, H. P., Shi, J., Zhou, L., Su, T., 2014, Synthesized magnetic manganese ferrite nanoparticles on activated carbon for sulfamethoxazole removal, Clean-Soil, Air, Water, 42, 1199-1207.   DOI
36 Wong, K. T., Yoon, Y., Snyder, S. A., Jang, M., 2016, Phenyl-functionalized magnetic palmbased powdered activated carbon for the effective removal of selected pharmaceutical and endocrine-disruptive compounds, Chemosphere, 152, 71-80.   DOI
37 Ternes, T. A., Meisenheimer, M., McDowell, D., Sacher, F., Brauch, H. J., Haist-Gulde, B., Preuss, G., Wilme, U., Zulei-Seibert, N., 2002, Removal of pharmaceuticals during drinking water treatment, J. Environ. Sci. Technol., 36, 3855-3863.   DOI
38 Gul, P., Ahmad, K. S., Ali, D., 2021, Activated carbon processed from Citrus sinensis: Synthesis, characterization and application for adsorption-based separation of toxic pesticides from soils, Sep. Sci. Technol., 56, 1810071.
39 Gupta, V. K., Gupta, B., Rastogi, A., Agarwal, S., Nayak, A., 2011, A Comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye-Acid Blue 113, J. Hazard. Mater., 186, 891-901.   DOI
40 Ho, Y. S., McKay, G., 1998, The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat, Can. J. Chem. Eng., 76, 822-827.   DOI
41 Kam, S. K., Kang, K. H., Lee, M. G., 2017a, Characteristics of activated carbon prepared from waste citrus peel by KOH activation, Appl. Chem. Eng., 28(6), 649-654.
42 Kam, S. K., Lee, M. G., 2018. Adsorption characteristics of 2,4-dichlorophenol by magnetic activated carbon prepared from waste citrus peel, Applied Chem. Eng., 29(4), 388-394.
43 Lagergren, S., 1898, About the theory of so-called adsorption of soluble substances, Kunglia Svenska Vetenskapsa-kademiens Handlingar, 24, 1-39.
44 Kemper, N., 2008, Veterinary antibiotics in the aquatic and terrestrial environment, Ecol. Ind., 8, 1-13.   DOI
45 Kim, S. H., Shon, H. K., Ngo, H. H., 2010, Adsorption characteristics of antibiotics trimethoprim on powdered and granular activated carbon, J. Ind. Eng. Chem., 16, 344-349.   DOI
46 Klavarioti, M., Mantzavinos, D., Kassinos, D., 2009, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation process-a review, Environ. Int., 35, 402-417.   DOI