Browse > Article
http://dx.doi.org/10.14773/cst.2022.21.5.381

Anthocyanins Extracted from Grapes as Green Corrosion Inhibitors for Tin Metal in Citric Acid Solution  

Mohamed, Mervate Mohamed (Empty Quarter Research Centre, Department of Chemistry, Faculty of Sharourah's Science and Arts, Najran University)
Alsaiari, Raiedhah (Empty Quarter Research Centre, Department of Chemistry, Faculty of Sharourah's Science and Arts, Najran University)
Al-Qadri, Fatima A. (Empty Quarter Research Centre, Department of Chemistry, Faculty of Sharourah's Science and Arts, Najran University)
Shedaiwa, Iman Mohammad (Empty Quarter Research Centre, Department of Chemistry, Faculty of Sharourah's Science and Arts, Najran University)
Alsaiari, Mabkhoot (Empty Quarter Research Centre, Department of Chemistry, Faculty of Sharourah's Science and Arts, Najran University)
Musa, Esraa Mohamed (Empty Quarter Research Centre, Department of Chemistry, Faculty of Sharourah's Science and Arts, Najran University)
Alkorbi, Faeza (Empty Quarter Research Centre, Department of Chemistry, Faculty of Sharourah's Science and Arts, Najran University)
Alkorbi, Ali S. (Empty Quarter Research Centre, Department of Chemistry, Faculty of Sharourah's Science and Arts, Najran University)
Publication Information
Corrosion Science and Technology / v.21, no.5, 2022 , pp. 381-389 More about this Journal
Abstract
Cyclic Voltammetry and weight loss measurements were used to investigate corrosion prevention of tin in a 0.5M citric acid solution containing Anthocyanins extracted from grapes at various concentrations and temperatures. Results showed that the investigated chemicals, Anthocyanins extracted from grapes, performed well as tin corrosion inhibitors in 0.5M citric acid. Increasing the concentration of Anthocyanins increased their corrosion inhibition efficiencies. When the temperature dropped, their inhibition efficiencies, increased indicating that higher temperature tin dissolution predominated the adsorption of Anthocyanins at the surface of tin metal. When inhibitor concentrations were increased, their inhibition efficiencies were also increased. These results revealed that corrosion of tin metal was inhibited by a mixed type of adsorption on the metal surface. The adsorption isotherm of Langmuir governed the adsorption of Anthocyanins. Thermodynamic parameters such as the enthalpy of adsorption, the entropy of adsorption, and Gibbs free energy and kinetic parameters such as activation energy, enthalpy of activation, and entropy of activation were computed and discussed in this study.
Keywords
Corrosion inhibitors; Tin metal; Cyclic Voltammetry; Weight loss; Adsorption models;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Bahgat Radwan, M. H. Sliem, P. C. Okonkwo, M. F. Shibl, and A. M. Abdullah, Corrosion inhibition of API X120 steel in a highly aggressive medium using stearamidopropyl dimethylamine, Journal of Molecular Liquids, 236, 220 (2017). Doi: https://doi.org/10.1016/j.molliq.2017.03.116   DOI
2 M. M. Giusti and R. E. Wrolstad, Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy, Current Protocols in Food Analytical Chemistry, 00, F1.2.1 (2001). Doi: http://doi.org/10.1002/0471142913.faf0102s00   DOI
3 R. Solmaz, G. Kardas_, M. Culha, B. Yazici, M. Erbil, Investigation of adsorption and inhibitive effect of 2-mercaptothiazoline on corrosion of mild steel in hydrochloric acid media, Electrochimica Acta, 53, 5941 (2008). Doi: https://doi.org/10.1016/j.electacta.2008.03.055   DOI
4 M. G. Tsoeunyane, M. E. Makhatha, and O. A. Arotiba, Corrosion Inhibition of Mild Steel by Poly (butylene succinate)-L-histidine Extended with 1,6-diisocynatohexane Polymer Composite in 1 M HCl, International Journal of Corrosion, Article ID 7406409 (2019). Doi: https://doi.org/10.1155/2019/7406409   DOI
5 S.E. Kaskah, M. Pfeiffer, H. Klock, H. Bergen, G. Ehrenhaft, P. Ferreira, J. Gollnick, and C. B. Fischer, Surface protection of low carbon steel with N-acyl sarcosine derivatives as green corrosion inhibitors, Surfaces and Interfaces, 9, 70 (2017). Doi: https://doi.org/10.1016/j.surfin.2017.08.002   DOI
6 P. Kannan, T. S. Rao, and N. Rajendran, Improvement in the corrosion resistance of carbon steel in acidic condition using naphthalen-2-ylnaphthalene-2-carboxammide inhibitor, Journal of Colloid and Interface Science, 512, 618 (2018). Doi: https://doi.org/10.1016/j.jcis.2017.09.061   DOI
7 E. Naderi, A. H. Jafari, M. Ehteshamzadeh, M. G. Hosseini, Effect of carbon steel microstructures and molecular structure of two new Schiff base compounds on inhibition performance in 1 M HCl solution by EIS, Materials Chemistry and Physics, 115, 852 (2009). Doi: https://doi.org/10.1016/j.matchemphys.2009.03.002   DOI
8 R. Hsissou, S. Abbout, A. Berisha, M. Berradi, M. Assouag, N. Hajjaji, A. Elharfi, Experimental, DFT and molecular dynamics simulation on the inhibition performance of the DGDCBA epoxy polymer against the corrosion of the E24 carbon steel in 1.0 M HCl solution, Journal of Molecular Structure, 1182, 340 (2019). Doi: https://doi.org/10.1016/j.molstruc.2018.12.030   DOI
9 V. Hong, and R. E. Wrolstad, Characterization of anthocyanin-containing colorants and fruit juices by HPLC/photodiode array detection, Journal of Agricltural and Food Chemistry, 38, 698 (1990). Doi: https://doi.org/10.1021/JF00093A025   DOI
10 N. B. Iroha, N. A. Madueke, Effect of Triumfetta rhomboidea Leaves Extract on the Corrosion Resistance of Carbon Steel in Acidic Environment, Chemical Science International Journal, 25, 1 (2018). Doi: https://doi.org/10.9734/CSJI/2018/45807   DOI
11 B. El Ibrahimi, A. Baddouh, R. Oukhrib, S. El Issami, Z. Hafidi, and L. Bazzi, Electrochemical and in silico investigations into the corrosion inhibition of cyclic amino acids on tin metal in the saline environment, Surfaces and Interfaces, 23, 100966 (2021). Doi: https://doi.org/10.1016/j.surfin.2021.100966   DOI
12 N. El-Aouni, A. Benabida, M. Cherkaoui, A. Elharfi, A New Epoxy Resin Based Organic Molecule as an Effective Inhibitor of Mild Steel Corrosion in a Sulfuric Acid Medium, Journal of Chemical Technology and Metallurgy, 53, 878 (2018). https://dl.uctm.edu/journal/node/j2018-5/12_17-138_p878-890.pdf
13 V. Hong & R. E. Wrolstad, Use of HPLC separation/photodiode array detection for characterization of anthocyanins, Journal of Agricultural and Food Chemistry, 38, 708 (1990). Doi: https://doi.org/10.1021/jf00093a026   DOI
14 R. M. Perez-Gregorio, M. S. Garcia-Falcon, J. SimalGandara, A.N. Rodrigues, & D.P.F. Almeidac, Identification and quantification of flavonoids in traditional cultivars of red and white onions at harvest, Journal of Food Composition and Analysis, 23, 592 (2010). Doi: https://doi.org/10.1016/j.jfca.2009.08.013   DOI
15 B. A. Addi, A. A. Addi, A. Shaban, E. A. Addi, and M. Hamdani, Tin corrosion inhibition by molybdate ions in 0.2 M maleic acid solution: Electrochemical and surface analytical study, Mediterranean Journal of Chemistry, 10, 465 (2020). Doi: http://dx.doi.org/10.13171/mjc10502005141394aa   DOI
16 C. Qin, Y. Li, W. Niu, Y. Ding, R. Zhang, X. Shang, Analysis and characterisation of anthocyanins in mulberry fruit, Czech Journal of Food Sciences, 28, 117(2010). Doi: https://doi.org/10.17221/228/2008-CJFS   DOI
17 H. Zarrok, H. Oudda, A. Zarrouk, R. Salghi, B. Hammouti, and M. Bouachrine, Weight Loss Measurement and Theoretical Study of New Pyridazine Compound as Corrosion Inhibitor for C38 Steel in Hydrochloric Acid Solution, Der Pharma Chemica, 3, 576 (2011).
18 R. K. Pathak, Pratiksha Mishra, Drugs as Corrosion Inhibitors: A Review, International Journal of Science and Research, 5, 671 (2016). Doi: http://dx.doi.org/10.21275/v5i4.nov162623   DOI
19 N. A. G. Abdel-Rahman, Tin-plate corrosion in canned foods, Journal of Global Biosciences, 4, 2966 (2015). https://www.mutagens.co.in/jgb/vol.04/7/040743.pdf
20 S. S. Abdel Rehim, S. M. Sayyah, and M. M. El Deeb, Corrosion of tin in citric acid solution and the effect of some inorganic anions, Materials Chemistry and Physics, 80, 696 (2003). Doi: https://doi.org/10.1016/S0254-0584(03)00128-7   DOI
21 A. Loncaric, A. Pichler, I. Trtinjak, V. Pilizota, and M. Kopjar, Phenolics and antioxidant activity of freeze-dried sour cherry puree with addition of disaccharides, LWT, 73, 391 (2016). Doi: https://doi.org/10.1016/j.lwt.2016.06.040   DOI
22 K. O. Orubite and N. C. Oforka, Inhibition of the corrosion of mild steel in hydrochloric acid solutions by the extracts of leaves of Nypa fruticans Wurmb, Materials Letters, 58, 1768 (2004). Doi: https://doi.org/10.1016/j.matlet.2003.11.030   DOI
23 P.K. Malik, Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36, Dyes and Pigments, 56, 239(2003). Doi: https://doi.org/10.1016/S0143-7208(02)00159-6   DOI
24 Maria Jose Aliano-Gonzalez, Marta Ferreiro-Gonzalez, Estrella Espada-Bellido, Ceferino Carrera, Miguel Palma, Jesus Ayuso, Gerardo F. Barbero, and Jose A. Alvarez, Extraction of Anthocyanins and Total Phenolic Compounds from Acai (Euterpe oleracea Mart.) Using an Experimental Design Methodology. Part 3: Microwave-Assisted Extraction, Agronomy, 10, 179 (2020). Doi: https://doi.org/10.3390/agronomy10020179   DOI
25 N. J. N. Nnaji, C. O. B. Okoye, N. O. Obi-Egbedi, M. A. Ezeokonkwo, and J. U. Ani, Spectroscopic Characterization of Red Onion Skin Tannin and It's use as Alternative Aluminium Corrosion Inhibitor in Hydrochloric Acid Solutions, International Journal of Electrochemical Science, 8, 1735 (2013). http://electrochemsci.org/papers/vol8/80201735.pdf   DOI
26 Rosiane Rocha, Jose Pinela, Rui M. V. Abreu, Mikel Anibarro-Ortega, Tania C. S. P. Pires, Ana Luisa Saldanha, Maria Jose Alves, Antonio Nogueira, Isabel C.F.R. Ferreira, and Lillian Barros, Extraction of Anthocyanins from Red Raspberry for Natural Food Colorants Development: Processes Optimization and In Vitro Bioactivity, Processes, 8, 1447 (2020). Doi: https://doi.org/10.3390/pr8111447   DOI
27 A. S. Afolabi, A. C. Muhirwa, A. S Abdulkareem, and E. Muzenda, Weight Loss and Microstructural Studies of Stressed Mild Steel in Apple Juice, International Journal of Electrochemical Science, 9, 5895 (2014). http://www.electrochemsci.org/papers/vol9/91105895.pdf   DOI
28 M. M. Mohamed, F. A. Al-Qadri, R. Al Saiari, I. M. Shedaiwa, M. Al Sairi, and E. M. MUSA, Behaviour of ortho-N-Glycoside as Green Corrosion Inhibitors for Tin in 0.5 M Citric Acid, Asian Journal of Chemistry, 32, 2237 (2020). Doi: https://doi.org/10.14233/ajchem.2020.22797   DOI
29 N. Kumpawat, A. Chaturvedi, and R. K. Upadhyay, Comparative Study of Corrosion Inhibition Efficiency of Naturally Occurring Ecofriendly Varieties of Holy Basil (Tulsi) for Tin in HNO3 Solution, Open Journal of Metal, 2, 68 (2012). Doi: http://dx.doi.org/10.4236/ojmetal.2012.23010   DOI
30 R.T. Loto, C.A. Loto, A.L. Olaitan, and P. Babalola, Evaluation of the synergistic properties of 4-hydroxy-3-methoxybenzaldehyde and 1, 4-diaminobenzene on the electrochemical corrosion behaviour of mild steel in dilute acid solutions, Moroccan Journal of Chemistry, 5, 81 (2017). Doi: https://doi.org/10.48317/IMIST.PRSM/morjchem-v5i1.6589   DOI
31 X. Liu, Y. Cheng, W. Wang, F. Liu, and B. Hou, Application of 1D attapulgite as reservoir with benzotriazole for corrosion protection of carbon steel, Materials Chemistry and Physics, 205, 292 (2018). Doi: https://doi.org/10.1016/j.matchemphys.2017.11.038   DOI
32 M. Kissi, M. Bouklah, B. Hammouti, M. Benkaddour, Establishment of equivalent circuits from electrochemical impedance spectroscopy study of corrosion inhibition of steel by pyrazine in sulphuric acidic solution, Applied Surface Science, 252, 4190 (2006). Doi: https://doi.org/10.1016/j.apsusc.2005.06.035   DOI
33 P. Parthipan, J. Narenkumar, P. Elumalai, P. S. Preethi, A.U. Raja Nanthini, A. Agrawal, and A. Rajasekar, Neem extract as a green inhibitor for microbiologically influenced corrosion of carbon steel API 5LX in a hypersaline environments, Journal of Molecular Liquids, 240, 121 (2017). Doi: https://doi.org/10.1016/j.molliq.2017.05.059   DOI
34 E. A. Noor, A. H. Al-Moubaraki, Thermodynamic study of metal corrosion and inhibitor adsorption processes in mild steel/1-methyl-4[4'(-X)-styryl pyridinium iodides/hydrochloric acid systems, Materials Chemistry and Physics, 110, 145 (2008). Doi: https://doi.org/10.1016/j.matchemphys.2008.01.028   DOI
35 M. A. M. El-Haddad, A. B. Radwan, M. H. Sliem, Walid M. I. Hassan, and Aboubakr M. Abdullah, Highly efficient eco-friendly corrosion inhibitor for mild steel in 5M HCl at elevated temperatures: experimental & molecular dynamics study, J. scientific reports, 9, 3695 (2019). Doi: https://doi.org/10.1038/s41598-019-40149-w   DOI
36 F. Xu, J. Duan, S. Zhang, B. Hou, The inhibition of mild steel corrosion in 1 M hydrochloric acid solutions by triazole derivative, Materials Letters, 62, 4072 (2008). Doi: https://doi.org/10.1016/j.matlet.2008.05.037   DOI