• Title/Summary/Keyword: thermo-mechanical

Search Result 1,107, Processing Time 0.022 seconds

Thermal and Mechanical Properties of Poly(lactic acid) Specimens Fabricated by Various Equal-channel Angular Extrusion Processes (다양한 방식의 등통로각압축공정으로 가공된 Poly(lactic acid) 시편들의 열 및 기계적 물성)

  • Liu, Xu-Yan;Jung, Si-In;Choi, Ho-Suk;Oh, Jun-Taek;Kim, Jong-Kuk
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.206-210
    • /
    • 2011
  • We fabricated rod-like poly(lactic acid)(PLA) specimens through applying various methods of equal-channel angular extrusion(ECAE) process and investigated the change of thermal and mechanical properties of specimens before and after each ECAE process. Combining three re-injection routes(A, BC, and C) and three pass counts(1, 2 and 4) allowed us to fabricate 7 different PLA specimens. Thermal properties of each specimen were measured by both differential scanning calorimeter and thermo-gravimetric analyzer. Shear strains of each specimen with respect to applied loads were measured by indentation hardness tester. Field emmision scanning electron microscopy was used to observe internal microstructure of cross-section of each specimen. The observed microstructures qualitatively supported the explanation of hardness test results. Among 7 specimens, PLA-P2A showed the biggest shear strain probably due to its dense microstructure.

Synthesis and Characterization of Phosphoric Acid-doped Poly (2,5-benzimidazole) Membrane for High Temperature Polymer Electrolyte Membrane Fuel Cells (고온 고분자 연료전지용 인산 도핑 폴리(2,5-벤지이미다졸) 막의 제조 및 특성)

  • Nguyen, Thi Xuan Hien;Mishra, Ananta Kumar;Choi, Ji-Sun;Kim, Nam-Hoon;Lee, Joong-Hee
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.1
    • /
    • pp.26-33
    • /
    • 2012
  • Phosphoric acid-doped poly (2,5-benzimidazole) (DABPBI) was prepared by condensation polymerization of 3,4-diaminobenzoic acid for high temperature proton electrolyte membrane fuel cells. The membranes were casted directly using a hot-press unit and characterized by fourier transform infrared spectroscopy, thermogravimetric analysis, conductivity measurement, scanning electron microscopy and tensile test. The proton conductivities of DABPBI are observed to be 0.062 and 0.018 $S{\cdot}cm^{-1}$ under 30 and 1% relative humidity, respectively at a temperature of $120^{\circ}C$ which is appreciably higher than that of Nafion 115 under similar conditions. The DABPBI membrane has demonstrated excellent thermo- mechanical properties and proton conductivity suggesting its suitability as a high temperature membrane.

Influence of porosity and cement grade on concrete mechanical properties

  • Huang, Jiandong;Alyousef, Rayed;Suhatril, Meldi;Baharom, Shahrizan;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Assilzadeh, Hamid
    • Advances in concrete construction
    • /
    • v.10 no.5
    • /
    • pp.393-402
    • /
    • 2020
  • The given research focuses on examining the effect of relatively humidity (RH) and curing temperature on the hydrates as well as the porosity of calcium sulfoaluminate (CSA) cement pastes. Numerous tests, which consist of mercury intrusion porosimetry (MIP), thermosgravi metric (TG) and X-ray diffraction (XRD) were conducted. Various characterization techniques which include, scanning electron microscopy, Fourier transform microscopy along with X-ray diffraction evaluations were conducted on the samples to examine phase formation and crystallinity, morphology and microstructure along with bond formations and functional groups, respectively. During long-term study, the performance of concrete which consisted of limestone and flash-calcined was close to those from standard Portland cement concrete. Traditional classifications and methods of corrosion were widely used for the assessment of steel in concrete which may get employed to concrete which contains LC3 to recalibrate the range of polarization resistance for passitivity condition. For example, there is up to 79.5% and 146% respective flexural and compressive strengths. Moreover, they developed more advance electrical and thermo-mechanical performance with a substantial reduction in absorption of water of close to 400%. These advantages allow this research crucial to evaluate how these methods can be applied. Additionally, the research evaluates developed and more advanced cement preservation and repair techniques. The conclusion suggests concerted efforts by various stakeholders such as policy makers to enable low-carbon rates.

Borehole Heater Test at KAERI Underground Research Tunnel (지하처분연구시설(KURT)에서의 시추공 히터 시험)

  • Kwon, S.;Lee, C.;Yoon, C.H.;Jeon, S.W.;Cho, W.J.
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.225-234
    • /
    • 2011
  • In this study, an in situ heater test for investigating the thermo-mechanical behavior related to heat flow was carried out. It was the first in situ heater test in Korea. For the test, an adequate design of heater, observation sensors, and data logging system was developed and installed with a consideration of the site condition and the test purposes. It was possible to observe that steep joints are overwhelmingly developed in the test area from a joint survey. The major rock and rock mass properties at the test site could be determined from the thermal and mechanical laboratory tests using the rock cores from the site. From the measured rock temperature distribution, it was possible to observe the influence of the rock joints and the heat flow through tunnel wall. When the heater temperature was maintained as $90^{\circ}C$, the rock temperature at 0.3 m from the heater hole was increased up to $40^{\circ}C$.

Formulation of Fully Coupled THM Behavior in Unsaturated Soil (불포화지반에 대한 열-수리-역학 거동의 수식화)

  • Shin, Ho-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.75-83
    • /
    • 2011
  • Emerging issues related with fully coupled Thermo-Hydro-Mechanical (THM) behavior of unsaturated soil demand the development of a numerical tool in diverse geo-mechanical and geo-environmental areas. This paper presents general governing equations for coupled THM processes in unsaturated porous media. Coupled partial differential equations are derived from three mass balances equations (solid, water, and air), energy balance equation, and force equilibrium equation. With Galerkin formulation and time integration of these governing equations, finite element code is developed to find nonlinear solution of four main variables (displacement-u, gas pressure-$P_g$), liquid pressure-$P_1$), and temperature-T) using Newton's iterative scheme. Three cases of numerical simulations are conducted and discussed: one-dimensional drainage experiments (u-$P_g-P_1$), thermal consolidation (u-$P_1$-T), and effect of pile on surrounding soil due to surface temperature variation (u-$P_1$-T).

Thermal and structural analysis of a cryogenic conduction cooling system for a HTS NMR magnet

  • In, Sehwan;Hong, Yong-Ju;Yeom, Hankil;Ko, Junseok;Kim, Hyobong;Park, Seong-Je
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.59-63
    • /
    • 2016
  • The superconducting NMR magnets have used cryogen such as liquid helium for their cooling. The conduction cooling method using cryocoolers, however, makes the cryogenic cooling system for NMR magnets more compact and user-friendly than the cryogen cooling method. This paper describes the thermal and structural analysis of a cryogenic conduction cooling system for a 400 MHz HTS NMR magnet, focusing on the magnet assembly. The highly thermo-conductive cooling plates between HTS double pancake coils are used to transfer the heat generated in coils, namely Joule heating at lap splice joints, to thermal link blocks and finally the cryocooler. The conduction cooling structure of the HTS magnet assembly preliminarily designed is verified by thermal and structural analysis. The orthotropic thermal properties of the HTS coil, thermal contact resistance and radiation heat load are considered in the thermal analysis. The thermal analysis confirms the uniform temperature distribution for the present thermal design of the NMR magnet within 0.2 K. The mechanical stress and the displacement by the electromagnetic force and the thermal contraction are checked to verify structural stability. The structural analysis indicates that the mechanical stress on each component of the magnet is less than its material yield strength and the displacement is acceptable in comparison with the magnet dimension.

A Closed Counter-Current Two-Phase Thermosyphon Loop of a Cold Neutron Source in HANARO Research Reactor (하나로 원자로에 설치될 대향 이상 열사이펀 루프에 관한 실험)

  • Hwang, Kwon-Sang;Cho, Man-Soon;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1038-1045
    • /
    • 2000
  • An experimental study was carried out to delineate the flow characteristics in a closed countescurrent two-phase thermo syphon with concentric tubes. This is to be installed in the HANARO research reactor as a part of a Cold Neutron Source(CNS). In the present investigation, experiments ata room temperature with Freon-II3 as a moderator were performed. Results show that, based on the magnitude of pressure fluctuation, the flow regimes could be divided into 4 distinct ones in the ($V_f,\;Q_i$) plane, where $V_f$ represents the volume of the charged liquid and $Q_i$ the heat load: a stable flow regime, an oscillatory flow regime, a restablized flow regime and a dryout flow regime. For $V_f$>2.5l, the flow is stable at low $Q_i$. However, as $Q_i$ increases, the flow becomes oscillatory and finally restablizes As $V_f$ increases, the oscillation amplitude decreases, reaching to the restablized flow region at low $Q_i$, and the liquid level in the moderator cell remains high. In the oscillatory flow regimes, for a fixed VI; the oscillating period of time varies with $Q_i$, having a minimum value at a certain value of $Q_i$. The heat load, where the oscillating period of time is minimum, decreases as $V_f$ increases.

Performance of Natural Circulation Hot Water System with Flat-Plate Solar Collectors (평만형 태양열 집열기 를 설치한 자연 순환식 급탕시스템 의 성능 에 관한 연구)

  • 윤석범;전문헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.579-589
    • /
    • 1985
  • The storage tank of the natural-circulation-solar-hot-water system equipped with flat-plate solar collectors is located at higher elevation than the solar collectors. Therefore, the heat loss from the system due to a reversed flow during the night-time is an important factor as well as the day-time thermal performance of the system. The thermal performance of the natural-circulation-solar-hot-water system with flat-plate solar collectors during the day-time depends mainly on the heat collecting efficiency of the solar collectors, whereas its thermal performance during the night-time depends on the system configuration , such as the elevation of the water storage tank with respect to the solar collectors and the piping connections between the storage tank and the solar collectors, as well as thermo-physical properties of the circulating fluid. In the present work, a computer program has been developed to simulate a typical natural-circulation-solar-hot-water-system, and a series of simulation tests have been carried out with the computer program to examine the thermal performance of the system during the day-time as well as the hight-time. In addition , a series of experiment have been conducted under a real sun condition using a natural-circulation-solar-hot-water-system constructed and installed at the KAIST building to compare with the results obtained from computer simulations.

Study of Single Screw Extrusion Conditions on the Formability of TPE-800L Tube (TPE-800L 튜브 성형성에 대한 단축 압출기의 제조공정에 관한 연구)

  • Yoon, Juil;Kang, Sang-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.77-83
    • /
    • 2018
  • Thermoplastic elastomers are being used increasingly throughout industry owing to their superior properties, such as superior elasticity, formability, and recoverability. Currently, research related to thermoplastic elastomers is focused on the development of composite elastomers by combining with various materials and the development of equipment. On the other hand, in the field of small and medium sized companies, it is necessary to study not only the application of these new materials, but also the process conditions that enable the extrusion of thermoplastic elastomers in inexpensive uniaxial screwing equipment. If extrusion is performed in a single screw extruder, it is important to maintain a uniform thickness through process control of the extruder. This study examined the effects of the processing temperature, which is an extrusion process variable, on the formability of a tube in the thermoplastic elastomer TPE-800L uniaxial extrusion process. The nozzle zone temperature is the most important factor in the extrusion of thermoplastic elastomer TPE-800L; the most excellent moldability was confirmed at $165-170^{\circ}C$.

Behavior of girth-welded buried steel pipes under external pressure (원주 용접된 압력 매설강관의 거동 분석)

  • Jeon, Juntai;Lee, Chinhyung;Chang, Kyongho
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • This paper presents finite element (FE) analyses to clarify the effects of external pressure on the residual stresses in a girth-welded steel pipe. At first, FE simulation of the girth welding process is carried out to obtain the weld-induced residual stresses employing sequentially coupled three-dimensional (3-D) thermo-mechanical FE formulation. Then, 3-D elastic-plastic FE analyses incorporating the residual stresses and plastic strains obtained from the preceding FE simulation are performed to investigate the residual stress behavior in the girth-welded pipe under external pressure. The FE analysis results show that the hoop compressive stresses induced by the external pressure significantly alter the hoop residual stresses in the course of the mechanical loading.