• 제목/요약/키워드: thermal-cycling

검색결과 306건 처리시간 0.026초

금속표면처리제에 따른 코발트-크롬 합금과 의치상용 레진의 결합강도 (BOND STRENGTH BETWEEN COBALT-CHROMIUM ALLOY AND DENTURE BASE RESIN ACCORDING TO ADHESIVE PRIMERS)

  • 박종일;권주홍;이해형;조혜원
    • 대한치과보철학회지
    • /
    • 제38권2호
    • /
    • pp.160-168
    • /
    • 2000
  • This study evaluated the effects of four adhesive metal primers on the shear bond strength of a heat curing denture base resin(Lucitone 199) to cobalt-chromium alloy(Biosil-f). The adhesive metal primers were Cesead Opaque Primer, Metal Primer, MR Bond, and Super-Bond liquid. The metal surface primed or nonprimed was filled with the heat-curing methyl methacrylate resin. The specimens were stored in water at $37^{\circ}C$ for 24 hours and the alternately immersed in water bath at $5^{\circ}C\;and\;55^{\circ}C$ for up to 2,000 thermal cycles. Shear bond strengths were measured using UTM at a crosshead speed of 0.5mm/min. Failure surface were examined under magnifying glasses. All the primers examined improved the shear bond strength between denture base resin and cobalt-chromium alloy compared with nonprimed specimens before thermal cycling. The bond strength of Cesead Opaque Primer was greatest. And after 2,000 thermal cycles, the bond strengths between resin and cobalt-chromium alloy were decreased but the difference between thermal cycling 0 and 2,000 at Cesead Opaque primer and Metal Primer were not significant. This study indicated that Cesead Opaque Primer & Metal Primer is effective primers to obtain higher bond strength between heat cured denture base resin and cobalt-chromium alloy.

  • PDF

ACF를 이용한 CCM (Compact Camera Module)용 COF(Chip-On-Flex) 실장 기술 및 신뢰성 연구 (A Study on the Assembly Process and Reliability of COF (Chip-On-Flex) Using ACFs (Anisotropic Conductive Films) for CCM (Compact Camera Module))

  • 정창규;백경욱
    • 마이크로전자및패키징학회지
    • /
    • 제15권2호
    • /
    • pp.7-15
    • /
    • 2008
  • 본 논문에서는 ACF를 이용한 CCM용 COF 어셈블리의 실장 기술을 연구하고 COF 어셈블리의 신뢰성 분석을 수행하였다. 열팽창계수, 모듈러스, 유리전이온도 등 경화 후 ACF의 열-기계적 물성들을 분석하였으며, ACF의 경화거동 결과를 바탕으로 COF 접합공정 온도 및 시간을 최적화하였으며, 도전입자의 변형 관찰 및 전기적 접촉 저항 측정을 통해 본딩 압력에 대한 최적화를 수행하였다. 또한 ACF 물질 특성이 COF어셈블리의 신뢰성에 미치는 영향을 알아보기 위해 열-싸이클 시험, 고온 유지 시험, 고온고습 시험을 수행하였다. 신뢰성 시험 수행 후 ACF를 이용한 COF 어셈블리의 신뢰성에 가장문제가 되고 있는 점은 열-싸이클 신뢰성 시험에서 나타난 ACF joint의 접촉 저항 증가 문제였고, 이는 ACF 자체의 열-기계적 물성과 밀접한 관계가 있음을 확인하였다.

  • PDF

Fe-Ni 합금에서 래쓰 마르텐사이트와 렌즈상 마르텐사이트의 반복변태사이클(α' ↔ γ')에 따른 미세조직과 기계적 성질 (Effect of Transformation Cycles(α' ↔ γ')on Microstructures and Mechanical Properties of Lath and Lenticular Martensites in Fe-Ni Alloys)

  • 서성복;전중환;최종술
    • 열처리공학회지
    • /
    • 제13권2호
    • /
    • pp.85-90
    • /
    • 2000
  • The influence of transformation cycles (${\alpha}^{\prime}{\leftrightarrow}{\gamma}^{\prime}$) on the microstructure and mechanical properties of lath and lenticular martensites has been studied in Fe-Ni alloys. The width of lath in Fe-15%Ni alloy decreased with increasing the number of transformation cycles, while no appreciable change in dislocation density inside the lath was observed. In case of Fe-31%Ni alloy, a number of dislocations were additionally introduced into the martensite plate after the transformation cycling. Tensile strength and Vickers hardness of lath martensite decreased with the increase in number of transformation cycles, whereas those of lenticular martensite increased up to 1 cycle and then remained constant. Elongation of two alloys was deteriorated after 1 transformation cycling, corresponding to the tensile strength. But the decrement of elongation in Fe-31%Ni alloy was smaller than that in Fe-15%Ni alloy.

  • PDF

열충격에 의한 열차폐 코팅재의 기계적 거동 변화 (Changes in the Mechanical Behavior of Thermal Barrier Coatings Caused by Thermal Shock)

  • 장빈;이기성;김태우;김철
    • 한국재료학회지
    • /
    • 제27권1호
    • /
    • pp.25-31
    • /
    • 2017
  • This study investigates changes in the mechanical behaviors, especially hardness and indentation load-displacement curves, of thermal barrier coatings (TBCs) brought about by thermal shock. The TBCs on the Nickel-based bondcoat/superalloy was prepared with diameters of 25.4 mm and $600{\mu}m$ thickness. The results of thermal shock cycling test from $1100^{\circ}C$ of the highest temperature indicate that the thermal shock do not influence on the mechanical behavior, but a continuous decrease in porosity and increase in hardness were observed after 1200 thermal shock cycles; these changes are believed to be due to sintering of thermal barrier coating materials. The results that no degradation in the indentation load-displacement curves indicate that the coating shows good thermal shock resistance up to 1200 cycles at $1100^{\circ}C$ in air.

구리와 은 박막의 열팽창계수에 미치는 결정립 크기와 박막 두께의 영향 (The Effect of Grain Size and Film Thickness on the Thermal Expansion Coefficient of Copper and Silver Thin Films)

  • 황슬기;김영만
    • 대한금속재료학회지
    • /
    • 제48권12호
    • /
    • pp.1064-1069
    • /
    • 2010
  • Thin films have been used in a large variety of technological applications such as solar cells, optical memories, photolithographic masks, protective coatings, and electronic contacts. If thin films experience frequent temperature changes, thermal stresses are generated due to the difference in the coefficient of thermal expansion between the film and substrate. Thermal stresses may lead to damage or deformation in thin film used in electronic devices and micro-machined structures. Thus, knowledge of the thermomechanical properties of thin films, such as the coefficient of thermal expansion, is an important issue in determining the stability and reliability of the thin film devices. In this study, thermal cycling of Cu and Ag thin films with various microstructures was employed to assess the coefficient of thermal expansion of the films. The result revealed that the coefficient of thermal expansion (CTE) of the Cu and Ag thin films increased with an increasing grain size. However, the effect of film thickness on the CTE did not show a remarkable difference.

열 및 열-기계적 피로에 의한 내열합금 표면의 홈의 형상변화 (Morphological Change of the Surface Groove on a Heat Resistant Alloy Due to Thermal and Thermo-Mechanical Cycling)

  • 이봉훈;선신규;강기주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.11-16
    • /
    • 2007
  • The existence of grooves on the surface of bond coat has significant effect on the instability of thermal barrier system. In this work, the thermal-mechanical fatigue experiments were performed under various thermal and mechanical loads for FeCralloy specimens with and without yttrium dopant to observe the deformation of surface grooves. The effect of temperature, fatigue load and the ratio of curvature on the deformation of grooves were investigated. As the results, it has been found that the higher load level and the higher curvature ratio induces the larger deformation near the grooves. However, the addition of yittrium dopant induces the adverse results.

  • PDF

열하중과 굽힘 하중 조건에서의 솔더조인트 피로 특성 비교연구 (A Comparative study on the solder joint fatigue under thermal and mechanical loading conditions)

  • 김일호;이순복
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제7권2호
    • /
    • pp.45-55
    • /
    • 2007
  • In this study, two types of fatigue tests were conducted. Firs, cyclic bending tests were performed using the micro-bending tester. Second, thermal fatigue tests were conducted using a pseudo power cycling machine which was newly developed for a realistic testing condition. A three-dimensional finite element analysis model was constructed. A finite element analysis using ABAQUS was performed to extract the applied stress and strain in the solder joints. Creep deformation was dominant in thermal fatigue and plastic deformation was main parameter for bending failure. From the inelastic energy dissipation per cycle versus fatigue life curve, it can be found that the bending fatigue life is longer than the thermal fatigue life.

  • PDF

원자로냉각재계통 압력경계밸브 내부누설 평가 (Assessment of Internal Leak on RCS Pressure Boundary Valves)

  • 박준현;문호림;정일석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.322-327
    • /
    • 2001
  • The internal leaks of RCS pressure boundary valves may cause thermal fatigue crack because of the TASCS in RCS branch line. After experienced unisolable piping failures in several PWR plants, many studies have peformed to understand these phenomena and various methods were applied to ensure the structural integrity of piping. In this paper, the cause of unisolable piping failures and the alternatives to prevent recurrence of failure were reviewed. Also, the severity of piping failure including susceptibility of valve leaks was evaluated for the Westinghouse 2-loop plant. The length of turbulent penetration on RHR inlet piping was measured and, thermal fluid analysis and fatigue analysis was performed for this piping. As a means of ensuring the structural integrity, temperature monitoring and specialized UT and other alternatives were compared for the further application.

  • PDF

Numerical analysis of plasma-sprayed ceramic coatings for high-temperature applications

  • St. Doltsinis, Ioannis;Haller, Kai-Uwe;Handel, Rainer
    • Structural Engineering and Mechanics
    • /
    • 제4권6호
    • /
    • pp.679-702
    • /
    • 1996
  • The finite element method is employed in conjunction with micromechanical modelling in order to assess the performance of ceramic thermal barrier coatings applied to structural components. The study comprises the conditions of the deposition of the coating by plasma spraying as well as the thermal cycling of the coated component, and it addresses particularly turbine blades. They are exposed to high temperature changes strongly influencing the behaviour of the core material and inducing damage in the ceramic material by intense straining. A concept of failure analysis is discussed starting from distributed microcracking in the ceramic material, progressing to the formation of macroscopic crack patterns and examining their potential for propagation across the coating. The theory is in good agreement with experimental observations, and may therefore be utilized in proposing improvements for a delayed initiation of failure, thus increasing the lifetime of components with ceramic thermal barrier coatings.

내열용 오버레이 12%Cr계 스테인레스강의 열피로 특성에 미치는 Cr 함량과 델타-페라이트의 영향 (Effects of Cr Content and Volume Fraction of δ-Ferrite on Thermal Cycling Fatigue Properties of Overlay Welded Heat-Resistant 12%Cr Stainless Steels)

  • 정재영
    • 소성∙가공
    • /
    • 제26권6호
    • /
    • pp.356-364
    • /
    • 2017
  • In this study, submerged arc cladded Fe-Cr-Ni-Mo-CuWNbV-C stainless steels containing various Cr contents between 11.2 wt.% and 16.7 wt.% were prepared with fixed C content at about 0.14 wt.%. Using these alloys, changes in microstructure, tensile property, and thermal fatigue property were investigated. Phase fraction of delta-ferrite was increased gradually with increasing Cr content. However, tensile strength, hardness, and thermal fatigue resistance appeared to be decreased. When the microstructure of delta-ferrite was observed, it was revealed that the mesh structure retained up to about 15% Cr content. Although thermal fatigue resistance was almost the same for Cr contents between 11.0 and 14.5 wt.%, it was significantly decreased at higher Cr contents. This was evident from mean value of crack lengths of 10 largest ones. Evaluation of thermal fatigue resistance on alloys with various Cr contents revealed the following important results. First, the reproducibility of ranking test was excellent regardless of the number of cycles. Second, thermal fatigue resistance was increased in proportion to true tensile fracture strength values of overlay materials. Finally, the number of thermal fatigue cracks per unit length was increased with increasing true tensile fracture strength.