• Title/Summary/Keyword: thermal vapor deposition

Search Result 541, Processing Time 0.028 seconds

Fabrication of micro carbon structures using laser-induced chemical vapor deposition and Raman spectroscopic analysis (레이저 국소증착에 의한 탄소 미세 구조물 제조 및 분광분석)

  • ;;J. Senthil Selvan
    • Laser Solutions
    • /
    • v.5 no.2
    • /
    • pp.17-22
    • /
    • 2002
  • Characteristics of micro carbon structures fabricated with laser-induced chemical vapor deposition (LCVD) are investigated. An argon ion laser (λ=514.5nm) and ethylene gas were utilized as the energy source and precursor, respectively. The laser beam was focused onto a graphite substrate to produce carbon deposit through thermal decomposition of the precursor. Average growth rate of a carbon rod increased for increasing laser power and pressure. Micro carbon rods with good surface quality were obtained at near the threshold condition. Micro carbon rods with aspect ratio of about 100 and micro tubular structures were fabricated to demonstrate the possible application of this method to the fabrication of three-dimensional microstructures. Laser Raman spectroscopic analysis of the micro carbon structures revealed that the carbon rods are consisting of amorphous carbon.

  • PDF

The effect of various parameters for few-layered graphene synthesis using methane and acetylene

  • Kim, Jungrok;Seo, Jihoon;Jung, Hyun Kyung;Kim, Soo H.;Lee, Hyung Woo
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.42-46
    • /
    • 2012
  • The effect of the parameters for few-layered graphene growth by thermal CVD on nickel substrate was investigated. Graphene can be synthesized by using different strategies. Chemical vapor deposition (CVD) has known as one of the most attractive methods to produce graphene due to its good film uniformity, compatibility and large scale production. The control of parameters such as temperature, growth time and pressure in CVD process has been widely recognized as the most important process in graphene growth. Different carbon precursors, methane and acetylene, were introduced in the quartz tube with a variety of growth conditions. Raman spectroscopy was used to confirm the presence of a few- or multi-layered graphene.

Growth of highly purified carbon nanotubes by thermal chemical vapor deposition (열화학기상증착법에 의한 고순도 탄소나노튜브의 성장)

  • Lee, Tae-Jae;Lee, Cheol-Jin;Kim, Dae-Won;Park, Jung-Hoon;Son, Kwon-Hee;Lyu, Seung-Chul;Song, Hong-Ki;Kim, Seong-Jeen
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1839-1842
    • /
    • 1999
  • We have synthesized carbon nanotubes by thermal chemical vapor deposition of $C_2H_2$ on transition metal-coated silicon substrates. Carbon nanotubes are uniformly synthesized on a large area of the plain Si substrates, different from Previously reported porous Si substrates. It is observed that surface modification of transition metals deposited on substrates by either etching with dipping in a HF solution and/or $NH_3$ pretreatment is a crucial step for the nanotube growth prior to the reaction of $C_2H_2$ gas. We will demonstrate that the diameters of carbon naotubes can be controlled by applying the different transition metals.

  • PDF

Large-scale synthesis of the carbon coils using stainless steel substrate

  • Jeon, Young-Chul;Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.296-301
    • /
    • 2013
  • Carbon coils could be synthesized using $C_2H_2/H_2$ as source gases and $SF_6$ as an incorporated additive gas under the thermal chemical vapor deposition system. A 304-type stainless steel was used as a substrate with nickel powders as the catalyst. The surface of the substrate was pretreated using a sand paper or a mechanical drill to enhance the production yield of the carbon coils. The characteristics of the deposited carbon nanomaterials on the substrates were investigated according to the surface state on the stainless steel substrate. The protrusion induced by the grooves on the substrate surface could enhance the formation of the carbon nanomaterials having the coils geometries. The cause for the enhancement of the carbon coils formation by the grooves was suggested and discussed with the surface energies for the interaction between as-growing carbon elements. Finally, we could obtain the massive production yield of the carbon coils by the surface pretreatment using SiC sand papers on the several tens grooved stainless steel substrate.

Characteristics of Carbon Nanotube with Synthetic Conditions in Catalytic Chemical Vapor Deposition (촉매 화학 기상 증착법의 제조 조건에 따른 탄소 나노튜브의 특성)

  • Kim, Hyeon-Jin;Lee, Im-Ryeol
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.458-463
    • /
    • 2002
  • Carbon nanotubes were synthesized at various conditions using Ni-catalytic thermal chemical vapor deposition method and their characteristic properties were investigated by SEM, TEM and Raman spectroscopy. Carbon nanotubes were formed on very fine Ni-catalytic particles. The carbon nanotubes synthesized by thermal decomposition of acetylene at $700^{\circ}C$ had a coiled shape, while those synthesized at $850^{\circ}C$ showed a curved and Y-shape having a bamboo-like morphology. It was found that the carbon nanotube was also made on the fine Ni-catalytic particles formed on the surface of 100~400nm sized large ones after pretreatment with $NH_3$.ber composites show the high dielectric constant and large conduction loss which is increased with anisotropy of fiber arrangement. It is, therefore, proposed that the glass and carbon fiber composites can be used as the impedance transformer (surface layer) and microwave reflector, respectively. By inserting the foam core or honeycomb core (which can be treated as an air layer) between glass and carbon fiber composites, microwave absorption above 10 dB (90% absorbance) in 4-12 GHz can be obtained. The proposed fiber composites laminates with sandwitch structure have high potential as lightweight and high strength microwave absorbers.

Field Emission Stability of Carbon Nanotubes Grown by Thermal Chemical Vapor Deposition

  • Kim, B.K.;Kong, B.Y.;Seon, J.Y.;Lee, N.S.;Kim, H.J.;Han, I.T.;Choi, J.H.;Jung, J.E.;Kim, J.M.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.863-866
    • /
    • 2003
  • Multi-walled carbon nanotubes (CNTs) were synthesized on glass substrates in the different ramp-up heating ambient of vacuum, He, Ar, and $N_{2}$ by thermal chemical vapor deposition. CNTs with higher crystallinity were developed in the buffer gases with faster growth rates than in vacuum. Field emission characteristics were strongly related to the relative position of CNT emitters to the cathode electrodes. The areal-spread emission and instability were overcome by locating the emitters far away from the edges of cathode electrodes. The electrical conditioning of emitters improved their emission uniformity over a large area although it decreased the emission current. This study also discussed the long-term stability of CNT emitters.

  • PDF

Emission Properties from Induced Structural Degradation of a-C:H Thin Film

  • Yoo, Young-Zo;Song, Jeong-Hwan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.3
    • /
    • pp.89-92
    • /
    • 2011
  • Hydrogenated amorphous carbon (a-C:H) films were deposited by plasma enhanced chemical vapor deposition on silicon substrates. a-C:H thin film was irradiated to a typical He-Cd laser to study its emitting properties. The photoluminescence (PL) intensity during the irradiation achieved a maximum value when 2,000 seconds elapsed. Fourier transform infrared measurement revealed a-C:H thin film suffered transformation from a polymer-like to graphite-like phase during laser irradiation. Thermal annealing was done at various temperatures, ranging from room temperature to $400^{\circ}C$ in the atmosphere, to investigate structural changes in a-C:H film by heat generation during the emission. PL intensity of a-C:H thin film increased 1.5 times without apparent structural change, as annealing temperature increased up to $200^{\circ}C$. However, a-C:H film above $200^{\circ}C$ exhibited significant decrease of PL accompanying dehydrogenation. This led to a red shift of the PL peak.

A Novel Solid Phase Epitaxy Emitter for Silicon Solar Cells

  • Kim, Hyeon-Ho;Park, Seong-Eun;Kim, Yeong-Do;Ji, Gwang-Seon;An, Se-Won;Lee, Heon-Min;Lee, Hae-Seok;Kim, Dong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.480.1-480.1
    • /
    • 2014
  • In this study, we suggest the new emitter formation applied solid phase epitaxy (SPE) growth process using rapid thermal process (RTP). Preferentially, we describe the SPE growth of intrinsic a-Si thin film through RTP heat treatment by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD). Phase transition of intrinsic a-Si thin films were taken place under $600^{\circ}C$ for 5 min annealing condition measured by spectroscopic ellipsometer (SE) applied to effective medium approximation (EMA). We confirmed the SPE growth using high resolution transmission electron microscope (HR-TEM) analysis. Similarly, phase transition of P doped a-Si thin films were arisen $700^{\circ}C$ for 1 min, however, crystallinity is lower than intrinsic a-Si thin films. It is referable to the interference of the dopant. Based on this, we fabricated 16.7% solar cell to apply emitter layer formed SPE growth of P doped a-Si thin films using RTP. We considered that is a relative short process time compare to make the phosphorus emitter such as diffusion using furnace. Also, it is causing process simplification that can be omitted phosphorus silicate glass (PSG) removal and edge isolation process.

  • PDF

Preparation of Carbon Nanomaterials by Thermal CVD and their Hydrogen Storage Properties (열화학기상증착법에 의한 탄소나노소재의 합성 및 수소저장 특성)

  • Yu, Hyung-Kyun;Choi, Won-Kyung;Ryu, Ho-Jin;Lee, Byung-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.10
    • /
    • pp.867-870
    • /
    • 2001
  • The carbon nanomaterials were prepared using the thermal chemical vapor deposition with ${C_2}{H_2}$ on the Ni-graphite mixture as a supported catalyst. The samples were identified by SEM, TEM, Raman spectroscopy, and the hydrogen storage measurement by electrochemical method was also carried out. The purity of carbon nanotube prepared using ground mixture was higher than that of unground one. Also, the amount of hydrogen storage of purified carbon nanomaterials was more than that of unpurified one.

  • PDF

Synthesis of Graphene Using Polystyrene and the Effect of Boron Oxide on the Synthesis of Graphene (폴리스타이렌을 이용한 그래핀 합성 및 산화 붕소가 그래핀 합성에 미치는 영향)

  • Choi, Jinseok;An, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.279-285
    • /
    • 2018
  • Graphene is an interesting material because it has remarkable properties, such as high intrinsic carrier mobility, good thermal conductivity, large specific surface area, high transparency, and high Young's modulus values. It is produced by mechanical and chemical exfoliation, chemical vapor deposition (CVD), and epitaxial growth. In particular, large-area and uniform single- and few-layer growth of graphene is possible using transition metals via a thermal CVD process. In this study, we utilize polystyrene and boron oxide, which are a carbon precursor and a doping source, respectively, for synthesis of pristine graphene and boron doped graphene. We confirm the graphene grown by the polystyrene and the boron oxide by the optical microscope and the Raman spectra. Raman spectra of boron doped graphene is shifted to the right compared with pristine graphene and the crystal quality of boron doped graphene is recovered when the synthesis time is 15 min. Sheet resistance decreases from approximately $2000{\Omega}/sq$ to $300{\Omega}/sq$ with an increasing synthesis time for the boron doped graphene.