• Title/Summary/Keyword: thermal shock resistance

Search Result 175, Processing Time 0.023 seconds

The X-ray Detection Characteristic of vacuum evaporated CsI for Digital X-ray Image Sensor (디지털 X선 영상센서 적용을 위한 진공증착 CsI 특성평가)

  • Shin, Jung-Wook;Park, Ji-Koon;Choi, Jang-Yong;Seok, Dea-Woo;Kim, Jea-Hyung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.15-18
    • /
    • 2003
  • In recent years, there has been keen interest in phosphor materials responding X-ray. Cesium iodide of the materials is a material with a high $\gamma$-ray stopping power due to its relative high density and atomic number. CsI is noted for its high resistance to thermal and mechanical shock due to the absence of a cleavage plane. To design the structure of CsI detector, we analysed the structure with SEM and XRD and measured UV meter.

  • PDF

A Cost-competitive Optical Receiver Engine Based on Embedded Optics Technology for 400G PAM4 Optical Transceivers in Data Center Applications

  • Lee, Eun-Gu;Lee, Jyung Chan;Kang, Chang Hyun;Jeon, Kyeongwan;Choi, Jun-Seok;Lee, Hyun Soo;Park, Jong Woon;Moon, Jong Ha
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.121-128
    • /
    • 2021
  • We propose a novel, tiny optical receiver engine utilizing an all-in-one package based on embedded optics technology. The package's best transmission S21 and reflection S22 opto-electric (OE) bandwidths are 49.8 GHz and 34.9 GHz, respectively, and the reflectance of the optical engine is below -31.7 dB for all channels. The engine satisfies the MIL-STD-883G standard for reliability tests, such as mechanical and thermal shock, and vibration resistance. The sensitivity after 10 km single-mode fiber (SMF) transmission is below -8 dBm. The optical receiver engine is cost-competitive and applicable for 400G coarse wavelength division multiplexing 4 (CWDM4) 10 km optical transceivers.

Reliability Evaluation and failure Analysis for High Voltage Ceramic Capacitor (고압 커패시터의 고장분석과 신뢰성 평가)

  • 김진우;송옥병;신승우;이희진;신승훈;유동수
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2001.06a
    • /
    • pp.337-337
    • /
    • 2001
  • High voltage ceramic capacitors are widely applied in power electronic circuits, such as filters, snubbers, and resonant circuits, due to their excellent features of high voltage endurance and low aging. This paper presents a result of failure analysis and reliability evaluation for high voltage ceramic capacitors. The failure nodes and failure mechanisms were identified in order to understand the failure physics in a component. The causes of failure mechanisms for zero resistance phenomena under withstanding voltage test in high voltage ceramic capacitors molded by epoxy resin were studied by establishing an effective closed-loop failure analysis. Also, the condition for dielectric breakdown was investigated. Particular emphasis was placed on breakdown phenomena at the ceramic-epoxy interface. The validity of the results in this study was confirmed by the results of accelerated testing. Thermal shock test as well as pressure cooker test for high voltage ceramic capacitor mounted on a magnetron were implemented. Delamination between ceramic and epoxy, which, might cause electrical short in underlying circuitry, can occur during curing or thermal cycling. The results can be conveniently used to quickly identify defective lots, determine mean time to failure (MTTF) of each lot at the level of Inspection, and detect major changes in the vendors processes.

  • PDF

LED Delamination Evaluating Method by Thermal Shock Test (열충격시험을 통한 LED 박리 평가법에 관한 연구)

  • Jang, In-Hyeok;Han, Ji-Hoon;Ko, Min-ji;Lee, Young-Joo;Lim, Hong-Woo
    • Journal of Advanced Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.121-124
    • /
    • 2013
  • This paper proposed a new concept of estimating method for LED(light-emitting diode) delamination with high accuracy. Usually, The LED is composed several materials which are LED chips, gold wire, phosphor, epoxy resin, adhesive, reflector and lead frame. These different materials are usually delaminated in a trouble conditions which are huge temperature difference, hot and humid or mechanical shocked. When the components are delaminated, a luminance will be lost, moisture be absorbed easily and a thermal resistance be increased attendantly. As a conventional method to estimate a delamination of LEDs, a solution immersing method is usually used in a field of LED manufacturing companies or researching institutes. This method has an advantage of simplicity but it is only shown that the existence of delamination or not. In this paper, we have proposed an estimating method for LEDs delamination using the polishing and the electron microscope. New proposed method has shown the result of confirming delamination without destruction and enabled quantitative analysis for LED delamination.

Polybenzimidazole (PBI) Coated CFRP Composite as a Front Bumper Shield for Hypervelocity Impact Resistance in Low Earth Orbit (LEO) Environment

  • Kumar, Sarath Kumar Sathish;Ankem, Venkat Akhil;Kim, YunHo;Choi, Chunghyeon;Kim, Chun-Gon
    • Composites Research
    • /
    • v.31 no.3
    • /
    • pp.83-87
    • /
    • 2018
  • An object in the Low Earth Orbit (LEO) is affected by many environmental conditions unlike earth's surface such as, Atomic oxygen (AO), Ultraviolet Radiation (UV), thermal cycling, High Vacuum and Micrometeoroids and Orbital Debris (MMOD) impacts. The effect of all these parameters have to be carefully considered when designing a space structure, as it could be very critical for a space mission. Polybenzimidazole (PBI) is a high performance thermoplastic polymer that could be a suitable material for space missions because of its excellent resistance to these environmental factors. A thin coating of PBI polymer on the carbon epoxy composite laminate (referred as CFRP) was found to improve the energy absorption capability of the laminate in event of a hypervelocity impact. However, the overall efficiency of the shield also depends on other factors like placement and orientation of the laminates, standoff distances and the number of shielding layers. This paper studies the effectiveness of using a PBI coating on the front bumper in a multi-shock shield design for enhanced hypervelocity impact resistance. A thin PBI coating of 43 micron was observed to improve the shielding efficiency of the CFRP laminate by 22.06% when exposed to LEO environment conditions in a simulation chamber. To study the effectiveness of PBI coating in a hypervelocity impact situation, experiments were conducted on the CFRP and the PBI coated CFRP laminates with projectile velocities between 2.2 to 3.2 km/s. It was observed that the mass loss of the CFRP laminates decreased 7% when coated by a thin layer of PBI. However, the study of mass loss and damage area on a witness plate showed CFRP case to have better shielding efficiency than PBI coated CFRP laminate case. Therefore, it is recommended that PBI coating on the front bumper is not so effective in improving the overall hypervelocity impact resistance of the space structure.

Improvement of Oxidative Resistance for C/C Composite Coated (졸-겔법으로 알루미나를 도포한 탄소/탄소 복합재의 산화 억제효과)

  • Ju, Hyeok-Jong;Choe, Don-Muk;Kim, Yeong-Guk;Gwon, Ho-Gil
    • Korean Journal of Materials Research
    • /
    • v.3 no.4
    • /
    • pp.372-380
    • /
    • 1993
  • In order to improve the oxidative resistance of carbon/carbon composites, aluminium-isopropoxide and aluminium-tri-sec-butoxide sol were coated on the surface of 2D--carbon/carbon composiles and the effects uf coating were investigated. The effects of oxidative resistance were dominant in the case of catalyst/alkoxide mole ratio, 0.07, and $H_2O$/alkoxide mole ratio, 100. Through the dynamic TGA analysis with the heating rate of 20%/min, oxidative initiation tempera~ ture was enhanced about $80^{\circ}C$. The oxidative resistance effects of alkoxide sol were improved according to the times of coating. Also the 20% weight loss time of coated samples by TGA analysis was 20% better than that of un~ coated samples. The thickness of 1^{st} coated layer was about 3${\mu}$m and that of $2^{nd}$ and $3^{nd}$ coated layers was about respectively 4~5${\mu}$m and the weight loss were increased with the increasing of thermal shock test times.

  • PDF

Densification of Cf/SiC Composite Using PIP with Adding of Cyclohexene (Cyclohexene을 첨가한 PIP 공정 사용 Cf/SiC 복합재의 고밀도화)

  • Bae, Jin-Cheol;Cho, Kwang-Youn;Kim, Jun-Il;Im, Dong-Won;Park, Jong-Kyu;Lee, Man-Young;Lee, Jae-Yeol
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.322-327
    • /
    • 2013
  • Carbon fiber-reinforced SiC matrix composites have good oxidation resistance and thermal shock resistance. These properties have allowed the composites to be applied to high-temperature structures. In this study, $C_f/SiC$ composites were fabricated via precursor infiltration and pyrolysis (PIP) process, including liquid phase infiltration and chemical vapor curing using cyclohexene. The final $C_f/SiC$ composites, which have gone through the PIP process five times, showed a density of $1.79g/cm^3$, as compared to a density of $0.43g/cm^3$ for pre-densified bare carbon fiber preform. As for the oxidation resistance characteristics, the weight of $C_f/SiC$ composite was maintained at 81% at $1400^{\circ}C$ in air for 6 hours. Chemical vapor curing (CVC) using cyclohexene has shown to be an effective method to achieve high densification, leading to increased oxidation resistance.

Fabrication and Characterization of C/SiC Composite by Electron Beam Curing (전자선 가교 방법을 이용한 탄소/탄화규소 복합재 제조 및 특성)

  • Shin, Jin-Wook;Jeun, Joon-Pyo;Kang, Phil-Hyun
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.575-580
    • /
    • 2009
  • Carbon fabric-reinforced silicon carbide composites (C/SiC) have attracted a considerable attention for high temperature structural application because of their outstanding oxidation resistance property and thermal shock resistance. In this study, we reported on the preparation of C/SiC composites by the polymer impregnation and pyrolysis (PIP) method. For this, polycarbosilane solution was impregnated into the carbon fabric and then cured by electron beam irradiation under argon atmosphere. Afterwards, the cured composite was pyrolyzed at $1300^{\circ}C$ for 1 h under argon atmosphere to produce the C/SiC composite. The porosity and density of the C/SiC composite were 13.5% and $2.44\;g/cm^3$, respectively, when the impregnation of the carbon fabric with the 30 wt% polycarbosilane solution conducted four times. In addition, in the isothermal experiment at $1500\;^{\circ}C$ in air for 5 h, the 95.9 wt% of the C/SiC composite was remained, indicating that the prepared C/SiC composite has a outstanding oxidation resistance.

Effect of Cr2O3-MgO-Y2O3 Addition on Mechanical Properties of Mullite Ceramics (Cr2O3-MgO-Y2O3 첨가에 따른 뮬라이트 세라믹스의 기계적 성질)

  • Lim, Jin-Hyeon;Kim, Shi Yeon;Yeo, Dong-Hun;Shin, Hyo-Soon;Jeong, Dae-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.762-767
    • /
    • 2017
  • Mullite ($3Al_2O_3{\cdot}2SiO_2$) has emerged as a promising candidate for high-temperature structural materials due to its erosion resistance, chemical and thermal stabilities, relatively low thermal expansion coefficient, excellent thermal shock and creep resistances, and low dielectric constant. However, since the pure mullite sintering temperature is as high as $1,600{\sim}1,700^{\circ}C$, there is an increasing need for a sintering additive capable of improving the strength characteristics while lowering the sintering temperature. Herein we have tried to obtain the optimal sintering additive composition by adding MgO, $Cr_2O_3$, and $Y_2O_3$ to mullite, followed by sintering at $1,325{\sim}1,550^{\circ}C$ for 2 h. With additives of 2 wt% of MgO, 2 wt% of $Cr_2O_3$, 4 wt% of $Y_2O_3$, A density of $3.23g/cm^3$ was obtained for the sintered body at $1,350^{\circ}C$ upon using 2 wt% MgO, 2 wt% $Cr_2O_3$, and 4 wt% $Y_2O_3$ as additives. The three-point flexural strength of that was 275 MPa and the coefficient of thermal expansion (CTE) was $4.15ppm/^{\circ}C$.

Solar CO2-Reforming of Methane Using a Double-Layer Absorber (더블 레이어 흡수기를 이용한 고온 태양열 메탄-이산화탄소 개질반응)

  • Kim, Dong-Yeon;Lee, Jin-Gyu;Lee, Ju-Han;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.267-273
    • /
    • 2012
  • Solar reforming of methane with CO2 was successfully tested with a direct irradiated absorber on a parabolic dish capable of 5kWth solar power. And the new type of double-layer absorber-the front layer, porous metal foam which absorbs the radiation and transfers the heat from material to gas, and the back layer, catalytically-activated metal foam-was prepared, and its activity was tested by using electric furnace. Ni was applied as the active metal on the gamma-Al2O3 coated Ni metal foam for the preparation of the catalytically-activated metal foam layer. Compared to conventional direct irradiation of the catalytically activated metal foam absorber, this new type of double layer absorber is found to exhibit a superior reaction and thermal storage performance at the fluctuating incident solar radiation. In addition, unlike direct irradiation of the foam absorber, double layer absorber has better thermal resistance, which prevents the emergence of cracks caused by mechanical or thermal shock. The total solar power absorbed reached up to 3.25kW and the maximum CH4 conversion was almost 59%.

  • PDF