Browse > Article

Fabrication and Characterization of C/SiC Composite by Electron Beam Curing  

Shin, Jin-Wook (Radiation Research Division for Industry and Environment, Korea Atomic Energy Research Institute)
Jeun, Joon-Pyo (Radiation Research Division for Industry and Environment, Korea Atomic Energy Research Institute)
Kang, Phil-Hyun (Radiation Research Division for Industry and Environment, Korea Atomic Energy Research Institute)
Publication Information
Polymer(Korea) / v.33, no.6, 2009 , pp. 575-580 More about this Journal
Abstract
Carbon fabric-reinforced silicon carbide composites (C/SiC) have attracted a considerable attention for high temperature structural application because of their outstanding oxidation resistance property and thermal shock resistance. In this study, we reported on the preparation of C/SiC composites by the polymer impregnation and pyrolysis (PIP) method. For this, polycarbosilane solution was impregnated into the carbon fabric and then cured by electron beam irradiation under argon atmosphere. Afterwards, the cured composite was pyrolyzed at $1300^{\circ}C$ for 1 h under argon atmosphere to produce the C/SiC composite. The porosity and density of the C/SiC composite were 13.5% and $2.44\;g/cm^3$, respectively, when the impregnation of the carbon fabric with the 30 wt% polycarbosilane solution conducted four times. In addition, in the isothermal experiment at $1500\;^{\circ}C$ in air for 5 h, the 95.9 wt% of the C/SiC composite was remained, indicating that the prepared C/SiC composite has a outstanding oxidation resistance.
Keywords
C/SiC; electron beam curing; oxidation resistance; density; PIP process;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 M. E. Westwood, J. D. Webster, R. J. Day, F. H. Hayes, and R. Taylor, J. Mater. Sci., 31, 1389 (1996)   DOI
2 T. Noda, H. Araki, and H. Suzuki, J. Nucl. Mater., 212, 823 (1994)   DOI   ScienceOn
3 M. Z. Berbon, D. R. Dietrith, and D. B. Marshall, J. Am. Ceram. Soc., 84, 2229 (2001)   DOI   ScienceOn
4 A. Idesaki, M. Narisawa, K. Okamura, M. Sugimoto, Y. Morita, T. Seguchi, and M. Itoh, Rad. Phys. Chem., 60, 483 (2001)   DOI   ScienceOn
5 J. Greim, K. Hunold, K. A. Schwetz, and A. Lipp, Adv. Eng. Ceram., 46, 173 (1990)
6 M. Sasaki and T. Hirai, J. Eur. Ceram. Soc., 14, 257 (1994)   DOI   ScienceOn
7 A. B. Andrew, E. H. Greg, G. F. William, M. D. Douglas, and W. Hsin, Intermetallics, 16, 854 (2008)   DOI   ScienceOn
8 Z. Jiehua, Q. Shengru, L. Grofeng, Z. Yuebing, H. Wenbo, and J. Dechang, J. Mater. Process. Tech., 190, 358 (2007)   DOI   ScienceOn
9 P. H. Kang, J. P. Jeun, D. K. Seo, and Y. C. Nho, Rad. Phys. Chem., 78, 493 (2009)   DOI   ScienceOn
10 K. Masao, T. Shin, A. K. Kuniyuki, N. U. Nobutaka, and K. Yoshinari, Energy Convers. Manag., 42, 1977 (2001)   DOI   ScienceOn
11 J. F. Lynch, E. E. Ungar, and W. H. Duckworth, Am., Ceram. Soc. Bull., 40, 444 (1961)
12 J. D. Buckley, Ceram. Bull., 67, 364 (1988)   ScienceOn
13 J. E. Sheehan, K. W. Buesking, and B. J. Sullivan, Annu. Rev. Mater. Sci., 24, 19 (1994)   DOI   ScienceOn
14 N. S. Jacobson and D. M. Curry, Carbon, 44, 1142 (2006)   DOI   ScienceOn
15 J. Ke, H. C. Zhao, S. M. Qing, and W. Z. Wen, Mater. Sci. Eng. A, 390, 154 (2005)   DOI   ScienceOn
16 L. Guofeng, Q. Shengru, Z. Chengyu, H. Juntao, J. Dechang, and Z. Yuebing, Composite A, 39, 1467 (2008)   DOI   ScienceOn
17 J. F. Huang, H. J. Li, X. R. Zeng, and K. Z. Li, Ceram. Int., 32, 417 (2006)   DOI   ScienceOn
18 P. H. Kang and H. S. Yang, Korean J. Chem. Eng., 15, 580 (1998)   DOI   ScienceOn
19 K. Okada, H. Kato, and K. Nakajima, J. Am. Ceram. Soc., 77, 1691 (1994)   DOI   ScienceOn
20 M. Takeda, Y. Imai, H. Ichikawa, N. Kasai, T. Seguchi, and K. Okamura, Comp. Sci. Tech., 59, 739 (1999)
21 K. Kawamura, M. Ono, and K. Okazaki, Carbon, 30, 429 (1992)   DOI   ScienceOn