• 제목/요약/키워드: thermal resistivity

검색결과 509건 처리시간 0.026초

송배전관로 되메움용 순환골재의 열저항 측정 및 기존 열저항 예측 모델과의 비교 (Thermal Resistivity Measurement of Recycled Aggregates and Comparison with Conventional Prediction Model)

  • 위지혜;홍성연;최항석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.199.1-199.1
    • /
    • 2010
  • Use of recycled aggregates that are constituents of concrete or asphalt-based structures has become popular because the recycling is an eco-friendly way to overcome the depletion of natural aggregates. In order to adopt the recycled aggregates for backfilling a power transmission pipeline trench, their thermal resistivity should be low enough to prevent thermal runaway in the transmission system. In this study, a series of laboratory tests with QTM-500 and KD2 Pro was performed to measure the thermal resistivity of recycled aggregates prepared from various sources. Relationships between the thermal resistivity of recycled aggregates and the water content have been obtained with consideration of compaction effort. Similar to natural soils, the thermal resistivity of the recycled aggregates decreases with increasing the water content. In addition, this study compared the experimental data with conventional prediction models for the thermal resistivity in the literature, which suggests the availability of the recycled aggregates as backfill material substituting for natural aggregates when backfilling the power transmission pipeline trench.

  • PDF

저압 지중케이블의 토양 열저항률 적용에 관한 연구 (A Study on the Apply to Soil Thermal Resistivity of Low-Voltage Underground Power Cables)

  • 이주철;김기현;이영철
    • 조명전기설비학회논문지
    • /
    • 제26권5호
    • /
    • pp.65-70
    • /
    • 2012
  • The current-carrying capacities in IEC standards for underground refers to a soil thermal resistivity of 2.5[$K{\cdot}m/W$] where no measured data are available. But this value is considered too conservative and may not justifiable economically as to need precaution in using the value. In this paper, the standard practices on the application of soil thermal resistivity of some countries(UK, USA etc) are surveyed and proposed a reasonable representative value 1.0[$K{\cdot}m/W$] of soil thermal resistivity considering the domestic soil thermal properties with regard to the application of IEC standard.

154[kV]용 반도전층 재료의 최적저항, 비열 및 열전도 측정 (Volume Resistivity, Specific Heat and Thermal Conductivity Measurement of Semiconducting Materials for 154[kV])

  • 이경용;양종석;최용성;박대희
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권11호
    • /
    • pp.477-482
    • /
    • 2005
  • We have investigated volume resistivity and thermal properties showed by changing the content of carbon black which is the component parts of semiconducting shield in underground power transmission cable. Specimens were made of sheet form with the nine of specimens for measurement. Volume resistivity of specimens was measured by volume resistivity meter after 10 minutes in the preheated oven of both 25$\pm$1[$^{\circ}C$] and 90$\pm$1[$^{\circ}C$]. And specific heat (Cp) and thermal conductivity were measured by Nano Flash Diffusivity and DSC (Differential Scanning Calorimetry). The measurement temperature ranges of specific heat using the BSC was from 20[$^{\circ}C$] to 60[$^{\circ}C$], and the heating rate was 1[$^{\circ}C$/min]. And the measurement temperatures of thermal conductivity using Nano Flash Diffusivity were both 25[$^{\circ}C$] and 55[$^{\circ}C$]. Volume resistivity was high according to an increment of the content of carbon black from these experimental results. And specific heat was decreased, while thermal conductivity was increased by an increment of the content of carbon black. And both specific heat and thermal conductivity were increased by heating rate because volume of materials was expanded according to rise in temperature.

Volume Resistivity, Specific Heat and Thermal Conductive Properties of the Semiconductive Shield in Power Cables

  • Lee Kyoung-Yong;Choi Yong-Sung;Park Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권3호
    • /
    • pp.89-96
    • /
    • 2005
  • To improve the mean-life and reliability of power cables, we have investigated the volume resistivity and thermal properties demonstrated by changing the content of carbon black, an additive of the semiconductive shield for underground power transmission. Nine specimens were made of sheet form for measurement. Volume resistivity of the specimens was measured by a volume resistivity meter after 10 minutes in a preheated oven at temperatures of both 25$\pm$1[$^{\circ}C$] and 90$\pm$ 1[$^{\circ}C$]. As well, specific heat (Cp) and thermal conductivity were measured by Nano Flash Diffusivity and DSC (Differential Scanning Calorimetry). The ranges of measurement temperature were from 0[$^{\circ}C$] to 200[$^{\circ}C$], and heating temperature was 4[$^{\circ}C$/min]. From these experimental results, volume resistivity was high according to an increase of the content of carbon black. Specific heat was decreased, while thermal conductivity was increased according to a rise in the content of carbon black. Furthermore, both specific heat and thermal conductivity were increased by heating temperature because the volume of materials was expanded according to a rise in temperature.

시효처리된 연료전지 집전판용 Matte 주석도금 동판의 고온열화 거동과 비저항변화 (Degradation Behavior and Resistivity Changes After Thermal Aging of Matte Tin-Plated Copper Sheet for Current Collector in Fuel Cell)

  • 김주한;김재훈;구경완;금영범;정귀성;고행진;한상옥
    • 전기학회논문지
    • /
    • 제58권8호
    • /
    • pp.1559-1565
    • /
    • 2009
  • Resistivity changes and intermetallic growth after thermal aging of Matter tin-plated copper sheet for current collector in fuel cell were investigated to survey the diffusion of Cu into Sn in interface and surface. The results show that the intermetallic growth and resistivity depended on thermal aging temperature and dwell time. In Sn plate on a Cu substrate, Cu6Sn5(${\mu}$) and Cu3Sn(${\varepsilon}$) intermetallics layer were formed at plate/substrate interface. Cu6Sn5(${\mu}$) intermetallics layer gradually changed Cu3Sn(${\varepsilon}$). Moreover Cu get through Sn layer and it was diffused in the surface at $200^{\circ}C$. On the other hand, only Cu3Sn(${\varepsilon}$) intermetallics layer were formed at plate/substrate interface at $300^{\circ}C$. Consequently, the intermetallics formation, thermal condition and oxidation of surface, causes increase in the resistivity of Tin-plated copper sheet.

아세틸렌블랙 함량에 따른 반도전 재료의 체적저항과 열전도 특성 (Volume Resistivity and Thermal conductivity of Semiconducting Materials by Acetylene Black)

  • 양종석;이경용;최용성;박대희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.134-135
    • /
    • 2005
  • To improve mean-life and reliability of power cable, we have investigated volume resistivity and thermal conductivity showed by changing the content of acetylene black which is the component parts of semiconductive shield in underground power transmission cable. The sheets were primarily kneaded in their pellet form material samples for 5 minutes on rollers ranging between 70[$^{\circ}C$] and 100[$^{\circ}C$]. Then they were produced as sheets after pressing for 20 minutes at 180[$^{\circ}C$] with a pressure of 200[kg/cm]. The content of conductive acetylene black was the variable, and their contents were 20, 30 and 40[wt%], respectively. Volume resistivity of specimens was measured by volume resistivity meter after 10 minutes in the preheated oven of both $25\pm1[^{\circ}C]$ and $90\pm1[^{\circ}C]$. Thermal conductivity was measured by Nano Flash Diffusivity. The measurement temperatures of thermal conductivity using Nano Flash Diffusivity were both 25[$^{\circ}C$] and 55[$^{\circ}C$]. From these experimental results, volume resistivity was high according to an increase of the content of acetylene black. And thermal conductivity was increased to an increase of the content of acetylene black. And thermal conductivity were increased by heating rate because volume of materials was expanded according to rise in temperature.

  • PDF

관로 및 직매 포설에 대한 토양열저항의 검토 (STUDYING SOIL THERMAL RESISTIVITY ABOUT CABLE LAYING OF PIPE DUCTING, DIRECT BURYING)

  • 김영;권병일;권순철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.174-176
    • /
    • 1993
  • Laying up homogeneous power cable in the earth. we sure that one of the most effectest fact is the rising of thermal resistivity. Today, system designing of in and outdoor project, calculating current carrying capacity totally depend on standard of JCS-168D and IEC-287 to applicate. Specially, the formula of calculating soil thermal resistivity is what is based on KENELLY,s is usually used. In this report, Let's study the formula of soil thermal resistivity which was born in the idea of KENELLY.

  • PDF

열저항 특성을 고려한 지중송전관로 되메움재의 최적화(I) (Optimization of the Backfill Materials for Underground Power Cables considering Thermal Resistivity Characteristics (I))

  • 김유성;조대성;박영준
    • 한국지반신소재학회논문집
    • /
    • 제10권4호
    • /
    • pp.113-121
    • /
    • 2011
  • 지중송전관로의 되메움재로는 보통 강모래를 사용하고 있다. 그러나 강모래의 열저항률은 습윤시 $150^{\circ}C$-cm/Watt 정도이고 건조시에는 이보다 2배 이상의 값을 나타낸다. 연구의 최종목표는 함수비 변화에 따라 열저항률의 변화가 작은 재료(습윤시 열저항률 $50^{\circ}C$-cm/Watt, 건조시 열저항률 $100^{\circ}C$-cm/Watt를 목표로 함)의 개발이나, 이 연구에서는 강모래를 포함한 각종 되메움재 후보군에 대하여 함수비, 건조단위중량, 입도분포 등의 차이에 따른 열저항 특성을 탐침법에 의해 조사하고, 시험결과를 비교 분석하였다. 분석 결과, 열저항 특성은 단위중량의 변화, 건조상태의 경우 최적함수비의 상태를 그대로 대기 중에 건조시킨 경우와 최초의 건조 상태에서의 열저항률의 차이 등을 고려하여야 하는 것으로 나타났다. 또한 최대밀도가 되도록 입도분포가 개선된 혼합재료는 원재료에 비해 열저항률을 크게 낮출 수 있는 것으로 나타났다.

열 저항특성을 고려한 지중송전관로 친환경 되메움재 개발 (Development of Environmentally Friendly Backfill Materials for Underground Power Cables Considering Thermal Resistivity)

  • 김대홍;오기대
    • 한국지반환경공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.13-26
    • /
    • 2011
  • 지중송전케이블의 송전용량은 케이블 또는 주변지반의 최대허용온도에 좌우되기 때문에 케이블 주위 되메움재는 운영기간동안 낮은 열 저항성을 유지하여야 한다. 케이블 주위에 발생된 열은 되메움재를 통해 즉시 주위에 발산시켜 제거하여야 하며, 그렇지 않으면 통상온도($50{\sim}60^{\circ}C$)에서도 열폭주에 의한 절연파괴에 이를 수 있다. 본 논문에서는 되메움재의 열 저항을 낮추기 위한 여러 가지 방법에 대해 논하였으며, 다양한 첨가제를 사용하여 시험을 수행함으로써 열 저항 효과를 측정하였다. 연구결과, 영광 동림천 모래의 경우 상대적으로 균등한 입도분포를 나타내는 모래로써 함수비가 증가함에 따라 열저항은 감소하는 경향을 나타내고 있으며, 특히 건조상태에서의 열저항치는 매우 높은 값($260^{\circ}C-cm/watt$)을 보여주었다. 또한 진산 화강암 석분 및 모래-쇄석(A-2), 석분-쇄석 혼합재(E-1), SGFC(모래-자갈-플라이애시-시멘트 혼합재)의 경우 양호한 입도와 낮은 열저항($100^{\circ}C-cm/watt$ 건조시)을 보여주었으며, 이들 연구결과를 토대로 열저항이 낮고 환경친화적인 4가지 형태의 개선된 되메움재를 제시하였다.

ECR plasma로 전처리된 Cu seed층 위에 전해도금 된 Cu 막에 대한 Annealing의 효과 (Effects of Post-deposition Annealing on the Copper Films Electrodeposited on the ECR Plasma Cleaned Copper Seed Layer)

  • 이한승;권덕렬;박현아;이종무
    • 한국재료학회지
    • /
    • 제13권3호
    • /
    • pp.174-179
    • /
    • 2003
  • Thin copper films were grown by electrodeposition on copper seed layers which were grown by sputtering of an ultra-pure copper target on tantalum nitride-coated silicon wafers and subsequently, cleaned in ECR plasma. The copper films were then subjected to ⅰ) vacuum annealing, ⅱ) rapid thermal annealing (RTA) and ⅲ) rapid thermal nitriding (RTN) at various temperatures over different periods of time. XRD, SEM, AFM and resistivity measurements were done to ascertain the optimum heat treatment condition for obtaining film with minimum resistivity, predominantly (111)-oriented and smoother surface morphology. The as-deposited film has a resistivity of ∼6.3 $\mu$$\Omega$-cm and a relatively small intensity ratio of (111) and (200) peaks. With heat treatment, the resistivity decreases and the (111) peak becomes dominant, along with improved smoothness of the copper film. The optimum condition (with a resistivity of 1.98 $\mu$$\Omega$-cm) is suggested as the rapid thermal nitriding at 400oC for 120 sec.