DOI QR코드

DOI QR Code

Development of Environmentally Friendly Backfill Materials for Underground Power Cables Considering Thermal Resistivity

열 저항특성을 고려한 지중송전관로 친환경 되메움재 개발

  • Received : 2010.09.02
  • Accepted : 2010.11.17
  • Published : 2011.01.01

Abstract

Because the allowable current loading of buried electrical transmission cables is frequently limited by the maximum permissible temperature of the cable or of the surrounding ground, there is a need for cable backfill materials to be maintained at a low thermal resistivity during the service period. Temperatures greater than $50^{\circ}C$ to $60^{\circ}C$ may lead to breakdown of cable insulation and thermal runaway if the surrounding backfill material is unable to dissipate the heat as rapidly as it is generated. This paper describes the results of studies aimed at the development of backfill material to reduce the thermal resistivity. A large number of different additive materials were tested to determine their applicability as a substitute material. The results of Dong-rim river sand (relatively uniform) show that as water content level increases, thermal resistivity tends to decrease, whereas the thermal resistivity on dry condition is very high value($260^{\circ}C-cm/watt$). In addition, other materials(such as Jinsan granite screenings, A-2(sand and gravel mixture), E-1(rubble and granite screenings mixture) and SGFC(sand, gravel, fly-ash and cement mixture)) are well-graded materials with low thermal resistivity($100^{\circ}C-cm/watt$ when dry). Based on this research, 4 types of improved materials were suggested as the environmentally friendly backfill materials with low thermal resistivity.

지중송전케이블의 송전용량은 케이블 또는 주변지반의 최대허용온도에 좌우되기 때문에 케이블 주위 되메움재는 운영기간동안 낮은 열 저항성을 유지하여야 한다. 케이블 주위에 발생된 열은 되메움재를 통해 즉시 주위에 발산시켜 제거하여야 하며, 그렇지 않으면 통상온도($50{\sim}60^{\circ}C$)에서도 열폭주에 의한 절연파괴에 이를 수 있다. 본 논문에서는 되메움재의 열 저항을 낮추기 위한 여러 가지 방법에 대해 논하였으며, 다양한 첨가제를 사용하여 시험을 수행함으로써 열 저항 효과를 측정하였다. 연구결과, 영광 동림천 모래의 경우 상대적으로 균등한 입도분포를 나타내는 모래로써 함수비가 증가함에 따라 열저항은 감소하는 경향을 나타내고 있으며, 특히 건조상태에서의 열저항치는 매우 높은 값($260^{\circ}C-cm/watt$)을 보여주었다. 또한 진산 화강암 석분 및 모래-쇄석(A-2), 석분-쇄석 혼합재(E-1), SGFC(모래-자갈-플라이애시-시멘트 혼합재)의 경우 양호한 입도와 낮은 열저항($100^{\circ}C-cm/watt$ 건조시)을 보여주었으며, 이들 연구결과를 토대로 열저항이 낮고 환경친화적인 4가지 형태의 개선된 되메움재를 제시하였다.

Keywords

References

  1. Blackwell, J. H.(1956), A Transient-flow Method for Determination of Thermal Constants of Insulating Material in Bulk, Journal of Applied Physics, Vol. 25, No. 2, pp. 137-144.
  2. Boggs S. A., Chu, F. Y., Radhakrishna, H. S. and Steinmanin, J. E.(1981), Underground Cable Thermal Backfill, Proceedings of the Symposium on Underground Cable Thermal Backfill, Toronto, Canada, pp. 37-56.
  3. Carlslaw, H. S. and Jaeger, J. C.(1959), Conduction of Heat in Solids, 2nd Edition, Oxford University Press, New York, pp. 137-256.
  4. de Vries, D. A. and Peck, A. J.(1958), On the Cylindrical Probe of Measuring Thermal Conductivity with Special Reference to Soils, Aust. Jour. Physics., Vol. 11, No. 2, pp. 255-271. https://doi.org/10.1071/PH580255
  5. Fukagawa, H., Imajo, T. and Ogata, N.(1974), Thermal Diffusion and its Application to Cable Ampacity, CRIEPI-73087, pp. 25-85.
  6. Hopper, F. C. and Lepper, F. R.(1950), Transient Heat Flow Apparatus for the Determination of Thermal Conductivities, Heating piping and Air Conditioning, ASHVE J. Sect., Vol. 24, No. 10, p. 464.
  7. Horrocks, J. K. and McLanughlin.(1963), Non-steady State Measurements of Liquid Polyphenyls, Proc. Roy. Soc. Lond., Ser. A, Vol. 273. pp. 34-45.
  8. Imajo, T.(1976), Development of Backfill Soils for Underground Cables(2) - Study on the Optimum Grading Distribution, CRIEPI- 72061, 175063, pp. 121-145.
  9. Mitchell, J. K. and Chan, C. K.(1982), Backfill Materials for Underground Power Cables, Phase 1-3, EPRI EL-506, EL-1894, EL-4150, pp. 37-45.
  10. Wiseman, R. J. and Burrel, R. W.(1969), Soils Thermal Characteristics in Relation to Underground Power Cable, AIEE Committee Report, Transaction of AIEE, Vol. 79, pp. 792-856.