DOI QR코드

DOI QR Code

Optimization of the Backfill Materials for Underground Power Cables considering Thermal Resistivity Characteristics (I)

열저항 특성을 고려한 지중송전관로 되메움재의 최적화(I)

  • Received : 2011.11.18
  • Accepted : 2011.12.23
  • Published : 2011.12.30

Abstract

River sand has generally used for the backfill material of underground power cables. The thermal resistivity of it has $150^{\circ}C$-cm/Watt in wet condition and more than double in dry condition. The final goal of this study is to find the backfill material which has a small change in thermal resistivity with various water contents, for example thermal resistivity is $50^{\circ}C$-cm/Watt and $100^{\circ}C$-cm/Watt in wet and dry conditions respectively. In this study it is presented that the comparison of thermal resistivity using stone powder, crush rock, weathered granite soil and Jumunjin sand as well as river sand in the needle method regarding water content, dry unit weight and particle size distribution. As a result, the thermal resistivity of a material is minimized when they have maximum dry unit weight at optimum moisture content and maximum density by appropriately mixing materials for particle size distribution. Therefore thermal resistivity characteristics should be considered two factors: one is the difference between natural dry condition and dry state after optimum moisture content, and the other is the difference between unit weight of raw material and maximum dry density.

지중송전관로의 되메움재로는 보통 강모래를 사용하고 있다. 그러나 강모래의 열저항률은 습윤시 $150^{\circ}C$-cm/Watt 정도이고 건조시에는 이보다 2배 이상의 값을 나타낸다. 연구의 최종목표는 함수비 변화에 따라 열저항률의 변화가 작은 재료(습윤시 열저항률 $50^{\circ}C$-cm/Watt, 건조시 열저항률 $100^{\circ}C$-cm/Watt를 목표로 함)의 개발이나, 이 연구에서는 강모래를 포함한 각종 되메움재 후보군에 대하여 함수비, 건조단위중량, 입도분포 등의 차이에 따른 열저항 특성을 탐침법에 의해 조사하고, 시험결과를 비교 분석하였다. 분석 결과, 열저항 특성은 단위중량의 변화, 건조상태의 경우 최적함수비의 상태를 그대로 대기 중에 건조시킨 경우와 최초의 건조 상태에서의 열저항률의 차이 등을 고려하여야 하는 것으로 나타났다. 또한 최대밀도가 되도록 입도분포가 개선된 혼합재료는 원재료에 비해 열저항률을 크게 낮출 수 있는 것으로 나타났다.

Keywords

References

  1. 김대홍, 이대수 (2002), "지중송전관로 되메움재의 열저항 특성", 한국지반공학회논문집, Vol.18, No.5, pp.209-220.
  2. 한국전력공사 전력연구원 (2003), 송전용량 증대를 위한 열방산회로 개선에 관한 연구 최종보고서.
  3. Carlslaw, H. S. and Jaeger, J. C. (1959), Conduction of Heat in Solids, 2nd Edition, Oxford University Press, New York.
  4. Fukagawa, H., Imajo, T. and Ogata. N.(1974), Thermal Diffusivity and its Application to Cable Ampacity, CRIEPI-73087.
  5. IEEE Std 442-1981 (1981), IEEE Guide for Soil Thermal Resistivity Measurement, pp.6-15.
  6. Imajo, T. (1976), Development of Backfill Soils for Underground Cable(2) - Study on the Optimum Grading Distribution, CRIEPI-72061, 175063.
  7. Kersten, M. S. (1949), Laboratory Research for the Determination of the Thermal Properties of Soils. Research Laboratory Investigations, Engineering Experiment Station, Technical Report 23, University of Minnesota, Minneapolis, Minn.
  8. Mitchell, J. K. and Chan, C. K. (1982), Backfill Materials for Underground Power Cable, Phase 1-4., EPRI EL-506, EL- 1894, EL-4150, EL-4856.
  9. Shannon, W. L. and Wells, W. A. (1959), "Tests for Thermal Diffusivity of Granular Materials", Proceedings of ASTM, Vol.47, pp.1044-1053.
  10. Stolpe, J. (1970), Soil Thermal Resistivity Measured Simply and Accurately, IEEE Transactions on Power Apparatus and Systems, Vol.PAS-89, No.2, February.
  11. Wisman, R. J. and Burrel, R. W. (1960), Soil Thermal Characteristics in Relation to Underground Power Cable, AIIE Committee Report, Transaction of AIEE, Vol.79, pp.792-856.