• Title/Summary/Keyword: thermal relaxation

Search Result 285, Processing Time 0.029 seconds

The Relaxation of Nonlinear Optical Properties in a Poled Polymer (극화된 고분자에서 비선형 광학특성의 완화)

  • Jung, Chi-Sup
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.491-496
    • /
    • 2010
  • The relaxation behavior of aligned electric dipoles in a mixed polymer of P2ANS with P(VDF-TrFE) is studied with optical second harmonic generation (SHG). In this work, a macroscopic noncentrosymmetry of the spin coated film was achieved by an electrical poling. The relaxation of induced polar order of nonlinear optic(NLO) chromophores after poling leads to an insufficient long-term stability of NLO properties. In this work, we develop a new technique to suppress such kind of dipole relaxation in a poled polymer. We found that the poled dipoles in a NLO polymer were effectively immobilized by the internal electric field created by a thermally annealed ferroelectric polymer. The long-term stability in a mixed system of NLO polymer/ferroelectric polymer was successively accomplished by a series of thermal treatments applied to the mixed polymer system at a temperature of $140^{\circ}C$ for at least 1hour after poling.

Computational Simulations of Thermoelectric Transport Properties

  • Ryu, Byungki;Oh, Min-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.273-281
    • /
    • 2016
  • This review examines computational simulations of thermoelectric properties, such as electrical conductivity, Seebeck coefficient, and thermal conductivity. With increasing computing power and the development of several efficient simulation codes for electronic structure and transport properties calculations, we can evaluate all the thermoelectric properties within the first-principles calculations with the relaxation time approximation. This review presents the basic principles of electrical and thermal transport equations and how they evaluate properties from the first-principles calculations. As a model case, this review presents results on $Bi_2Te_3$ and Si. Even though there is still an unsolved parameter such as the relaxation time, the effectiveness of the computational simulations on the transport properties will provide much help to experimental scientist researching novel thermoelectric materials.

2D deformation in initially stressed thermoelastic half-space with voids

  • Abbas, Ibrahim A.;Kumar, Rajneesh
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1103-1117
    • /
    • 2016
  • The present investigation is to study the plane problem in initially stressed thermoelastic half-space with voids due to thermal source. Lord-Shulman (Lord and Shulman 1967) theory of thermoelasticity with one relaxation time has been used to investigate the problem. A particular type of thermal source has been taken as an application of the approach. Finite element technique has been used to solve the problem. The components of displacement, stress, temperature change and volume fraction field are computed numerically. The resulting quantities are depicted graphically for different values of initial stress parameter. The relaxation time and the initial stress parameter have a significant effect on all distributions.

Numerical analysis of post welding heat treatment base on the thermal creep elastic-plastic theory (점열탄소성 이론에 의한 용접후열처리에 대한 수치해석)

  • 방한서;차용훈;오율권;노찬승;김종명
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.113-123
    • /
    • 1997
  • The welding residual stresses produced by welding frequently cause a crack and promote stress corrosion etc. in heat affected zone contained with external load and weakness of material. For the purpose pof relaxation of welding residual stress, post welding heat teratment(PWHT) is widely used. In this paper, the computer program which is based on Thermal-Elasto-plastic-creep theory for plane deformation on developed by finite element method (F.E.M) and verified its propriety by experimental measurement and also by using the developed computer program. The mechanical behavior of butt welding joint is clairfied during PWHT.

  • PDF

Numerical Simulation for Residual Stress Distributions of Thermal Barrier Coatings by High Temperature Creep in Thermally Grown Oxide (Thermally Grown Oxide의 고온 크리프에 따른 열차폐 코팅의 잔류응력 분포에 관한 유한요소해석)

  • Jang, Jung-Chel;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.8 s.291
    • /
    • pp.479-485
    • /
    • 2006
  • The residual stress changes on thermo-mechanical loading in the interface region of the Thermal Barrier Coating (TBC)/Thermally Grown Oxide (TGO)/Bond Coat (BC) were calculated on the TBC-coated superalloys using a Finite Element Method (FEM). It was found that the residual stress of the interface boundary was dependent upon mainly the oxide formation and the swelling rate of the oxide by creep relaxation. During an oxide swelling, the relaxation of residual stress which is due to creep deformation increased the TBC's life. In the case of the fine grain size of TGO scale, the TBC stresses piled up by oxide swelling could be relaxed by diffusional creep effect of TGO.

An Experimental Study on The Effect of Residual Stress Relaxation due to Phase Transformation (상변태에 의한 잔류응력 완화효과에 관한 실험적 연구)

  • 장경호;이진형;김재환
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.216-218
    • /
    • 2003
  • Most of ferrous b.c.c weld materials may experience martensitic transformation during rapid cooling after welding. And it is well known that volume expansion due to phase transformation could influence in the case of welding of high tensile strength steels on the relaxation of welding residual stress. To apply this effect practically, it is a prerequisite to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. In this study, we investigated the effect of phase transformation on the relaxation of welding residual stress through experiment. And three-dimensional thermal elastic-plastic FEM analysis is conducted to compare the effect of phase transformation on the relaxation of welding residual stress in high strength steels(POSTEN60, POSTEN80) with analytical results which is not considering the effect of phase transformation on residual stress relaxation. According to the results, the extents of welding residual stress relaxation due to phase transformation in the case of welding of POSTEN60, POSTEN80 are 0.85 $\sigma$/$\sigma$$\sub$Y0/, 0.75$\sigma$/$\sigma$$\sub$Y0/, respectively.

  • PDF

Temperature-Range-Dependent Optimization of Noninvasive MR Thermometry Methods (온도범위에 따른 비침습적 자기공명 온도측정방법의 최적화)

  • Kim, Jong-Min;Kumar, Suchit;Jo, Young-Seung;Park, Joshua Haekyun;Kim, Jeong-Hee;Lee, Chulhyun;Oh, Chang-Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.241-250
    • /
    • 2015
  • Noninvasive temperature monitoring is feasible with Magnetic Resonance Imaging (MRI) based on temperature sensitive MR parameters such as $T_1$ and $T_2$ relaxation times, Proton Resonance Frequency shift (PRFs), diffusion, exchange process, magnetization transfer contrast, chemical exchange saturation transfer, etc. While the temperature monitoring is very useful to guide the thermal treatment such as RF hyperthermia or thermal ablation, the optimization of the MR thermometry method is essential because the range of temperature measurement depends on the choice of the measurement methods. Useful temperature range depends on the purpose of treatment methods, for example, $42^{\circ}C$ to $45^{\circ}C$ for RF hyperthermia and over $50^{\circ}C$ for thermal ablation. In this paper, MR thermometry methods using $T_1$ and $T_2$ relaxation times and PRFs-based MR thermometry are tried on a 3.0 T MRI system and their results are reported and compared. In addition, the scanning protocol and temperature calculation algorithms from $T_1$ and $T_2$ relaxation times and PRFs are optimized for the different temperature ranges for the purpose of RF hyperthermia and/or thermal ablation.

Dielectric properties of 70/30 mol% P(VDF-TrFE) copolymer thin films with freqeuncy (70/30 mol% P(VDF-TrFE) 공중합체 박막의 주팍수에 따른 유전특성)

  • 윤종현;정무영;박수홍;임응춘;이상희;박상현;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.470-473
    • /
    • 2001
  • In this study, 70/30 mol% P(VDF-TrFE) copolymer thin films were prepared by physical vapor deposition, and dielectric properties with frequency were investigated. From results of TA(Thermal Analysis), the Curie transition temperature and melting temperature were observed at 118.8$^{\circ}C$ and 146$^{\circ}C$, respectively. Therefore, while thin films were prepared, the substrate temperature was varied from 30$^{\circ}C$ to 90$^{\circ}C$. The dielectric constant decreased with increasing frequency. At measuring frequency of 1kHz, the relative dielectric constant increased from 3.643 to 23.998 with increasing substrate temperature from 30$^{\circ}C$ to 90$^{\circ}C$. As a result of dielectric loss factor, ${\alpha}$-relaxation and ${\beta}$-relaxation were observed near at 100Hz and 1MHz, respectively. And the magnitude of ${\alpha}$-relaxation decreased and that of ${\beta}$-relaxation increased with increasing substrate temperature.

  • PDF

Analysis of Early-age Concrete Behavior considering Stress Relaxation (응력이완을 고려한 초기재령 콘크리트의 거동해석)

  • 조호진;박상순;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.641-646
    • /
    • 2001
  • In early-age concrete, volumetric deformations due to thermal expansion and moisture transfer are restrained by various boundary conditions, and then restraint stresses occur in proportion to developed stiffness. With increase of the age, these stresses are gradually relieved by significant relaxation behavior of early-age concrete. Therefore, it is necessary to consider the stress relaxation in order to analyze the behavior of early-age concrete more accurately. In this paper, we propose a unified algorithm which combines a relaxation model with hydration model, heat conduction model, micropore structure formation model, moisture diffusion model and mechanical properties development model and develop a finite element program based on the algorithm. The program is applied to evaluate stress development if a temperature-stress test machine (TSTM) specimen and a massive concrete structure, and then validity of the program is discussed and evaluated.

  • PDF

Electrical Relaxation in Silica Glasses and Nonlinearity in Electrical Conductivity (실리카 유리의 전기이완 특성과 비선형적 전기전도도)

  • 신동욱
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.923-929
    • /
    • 1999
  • The cause of optical nonlinearity induced in thermally poled silica glass is believed to be the space charge polarization. Since the second order optical nonlinearity (electro-optic effect) can be used in optical switches the optical nonlinearity in silica glass has drawn a large attention. Space charge polarization occurs when an ionic conducting material is subjected to dc electric field by the blocking electrode. Thermal poling performed to induce the optical nonlinearity in silica glass is basically identical to the process generating space charge polarization. As a first step to understand the mechanism of space charge polarization in silica glass hence the induced optical nonlinearity the absorption currents as functions of time were measured for various types of silica glasses and analyzed by the theory of space charge polarization. It was found that the electrical relaxation exhibited a step by the space charge polarization in the relatively long time range and dielectric loss peak showed a maximum at a specific temperature which is depending on type of silica glass. It was turned out that this relaxation might be a cause of nonlinearity in electrical conductivity of silica glass.

  • PDF