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ABSTRACT

This review examines computational simulations of thermoelectric properties, such as electrical conductivity, Seebeck coeffi-

cient, and thermal conductivity. With increasing computing power and the development of several efficient simulation codes for

electronic structure and transport properties calculations, we can evaluate all the thermoelectric properties within the first-prin-

ciples calculations with the relaxation time approximation. This review presents the basic principles of electrical and thermal

transport equations and how they evaluate properties from the first-principles calculations. As a model case, this review presents

results on Bi
2
Te

3
 and Si. Even though there is still an unsolved parameter such as the relaxation time, the effectiveness of the

computational simulations on the transport properties will provide much help to experimental scientist researching novel thermo-

electric materials. 
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1. Introduction

hermoelectric materials that recover waste heat and
transform it into electricity or vice versa have attracted

much attention because of their potential to help solve the
current global energy crisis. Even though, up to now, ther-
moelectric materials have mainly been used in niche mar-
kets such as small refrigerators, a cooling device for laser
diodes and cooling seats in automobiles, there have been
many efforts to widen the applications of thermoelectric
materials by enhancing their properties. The thermoelectric
performance of the materials is characterized by the so-
called dimensionless figure of merit, ZT=S2σT/κ, where S is
the Seebeck coefficient; σ is the electrical conductivity; κ is
the thermal conductivity, and T is the absolute tempera-
ture.1,2) Conventional thermoelectric materials show ZT~1
at room temperature.1,2) Recently, the enhancement of ZT
with ZT > 1 has been reported by many researchers. Here-
mans et al. reported that the value of ZT was 1.5 at 773K in
Thallium doped PbTe due to the local distortion of the den-
sity of states and the resulting enhancement of the Seebeck
coefficient.3) Pei et al. reported a ZT value of 1.8 at about
850K in Na-doped PbTe

1-x
Se

x
 alloys due to convergence of

many valleys in the valence bands.4) Other improvements of

ZT in the PbTe alloys have been reported in many
instances.5) Nevertheless, the developed materials have lim-
ited use and commercialization due to environmental, eco-
nomic and technical limitations including toxic elements in
the materials, high cost elements in the materials, and a
lack value for the ZT, respectively. 

To design and discovery novel thermoelectric materials
with high thermoelectric performance, computational simu-
lations of the thermoelectric properties could have an
important role in discovering novel materials as well as in
guiding experiments and understanding the results. The
computational simulations of three properties, the Seebeck
coefficient, the electrical conductivity, and the thermal con-
ductivity, have been a long-standing interest to many
researchers. The core properties such as the band structure
and the density of states, in calculating the transport prop-
erties, can be obtained with well-established computational
tools. On the other hand, the computational tools for esti-
mating the transport properties were recently established
and released to the public. This review covers the latest
advancements in computational simulations of thermoelec-
tric properties mainly focusing on the first-principles calcu-
lations with the aim to increase attention on thermoelectric
technologies in other researchers in computational materi-
als science and highlight potential routes for the discovery
of new thermoelectric materials. As a model case, this
review presents the results of the electrical and thermal
properties of Bi

2
Te

3
 and Si in detail. 

T
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2. Electrical Transport Properties: Seebeck 
Coefficient and Electrical Conductivity

The computational simulations for electrical conductivity
and the Seebeck coefficient can be done with the first-princi-
ples calculations and the Boltzmann transport equation.
The code BoltzTrap is the most widely used simulation
program for electrical properties.6) This code was first writ-
ten to use the eigen energy from the WIEN2k code.7) Fur-
thermore, other codes for the first-principles calculations
such as VASP and Quantum Espresso can also be used to
produce the eigen energy for which the correspondent inter-
face program was also developed.8-10) The BoltzWann code
is also available to evaluate electrical transport properties
with a maximally-localized Wannier function basis set.11)

Charge transport occurs when an electric field, and/or
thermal gradient is present, and this phenomenon can be
described as shown below:12)

(1)

where J is the charge flux; e is the electronic charge; f is the
charge distribution; σ is the electrical conductivity; E is the
electric field and v is the charge velocity. Namely, if we
know the distribution of the charge with respect to time and
space, the flux of the charge can be determined. The charge
distribution as a function of time can be described as fol-
lows:12) 

(2)

where r is the position of the electrons; p is the momentum
and the subscript c means collision. Thus, the above equa-
tion indicates the change in charge distribution after colli-
sion. And then, the relaxation time approximation is
assumed here. 

(3)

(4)

From equation (2)~(4), we can obtain 

(5)

and when we replace (1) with equation (5), the electrical
conductivity can be described as

(6)

This equation can be rewritten as the tensor form within
electronic structure calculations given as 

 (7)

where Ω is the unit cell volume; e is the carrier charge; ε is
the band energy; N is the number of k-points used in the
calculation; f

0
 is the Fermi-Dirac distribution function; τ is

the relaxation time; ν is the group velocity of charges and δ
is the delta function.6,13) The subscripts k and n mean the
crystal momentum and the band index, and the velocity, ν,
can be estimated from the band structure with the following
relationship:

(8)

where  is the reduced Planck constant. 
When a temperature difference is present, the total elec-

tric field is different from equation (1) due to the field origi-
nating from the Seebeck effect, and then, equation (1) is
changed to

(9)

And the heat flux (q) produced from the temperature dif-
ference can be described as

q = TJ
s
 = STJ − (10)

where J
s
 is the entropy flux. Both equations (9) and (10) are

called the Onsager relationship.14) Using equations (9) and
(10), we can obtain the Seebeck coefficient and electronic
thermal conductivity (k

e
) obtained from the band structure

calculation, and the results are shown below:6,13)

(11)

(12)

where μ is the chemical potential, and k
B
 is the Boltzmann’s

constant. From the equations above, we can identify that
the electrical conductivity, Seebeck coefficient, and elec-
tronic thermal conductivity can be directly estimated from
the band structure. Only one parameter we do not know yet
is the value of the relaxation time. If we assume that the
relaxation time varies less within the energy window of
interest, namely, assuming that the relaxation time is con-
stant, the Seebeck coefficient can be derived from the band
structure without any fitting parameter because the con-
stant relaxation time in the numerator and denominator
disappears. Of course, the relaxation time is dependent on
the band energy in real materials. Most codes for electrical
transport properties such as BoltzTraP and BoltzWann

evaluate the properties with a constant relaxation time
approximation and with energies of bands obtained from
very fine meshes in the reciprocal lattices. 

 
2.1 Case: Bi

2
Te

3

Bi
2
Te

3
 is a well-known thermoelectric material for room
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temperature and is used in commercially available thermo-
electric modules. Therefore, there are many reports on the
electronic structures of Bi

2
Te

3
, and the results of transport

properties simulations have been reported since the early
2000’s.15-29) The crystal structure of Bi

2
Te

3
 is shown in Fig. 1,

and the space group of the crystal structure is R m.30) The
quintuple sequences of Te(1)-Bi-Te(2)-Bi-Te(1) are stacked
along the c-axis in the hexagonal cell, where Te(1)-Te(1) has
weak van der Waals bonding, and the others have a mixture
of covalent and ionic bonding. It is well known from experi-
ments that the transport properties show anisotropic fea-
tures. The electrical and thermal conductivity are larger
along the basal plane than along the trigonal axis which
originates from a layered-like crystal structure of Bi

2
Te

3
.

The major defects in Bi
2
Te

3
 are antisite defects which are

responsible for carrier concentration.31) 

The characteristic electronic structure of Bi
2
Te

3
 and its

related compounds such Sb
2
Te

3
 and Bi

2
Se

3
 are listed in

Table 1, and the band structure of Bi
2
Te

3
 is also shown in

Fig. 2. The band structure was obtained with the WIEN2k

code with the following parameters: R
MT

K
MAX

=10, RMT=2.5
a.u., 72 k-points in irreducible Brillouin zone and PBE-3

Fig. 1. Crystal structure of Bi
2
Te

3
 in hexagonal (left) and

rhombohedral (right) cell.

Table 1. The Characteristic Features of the Electronic Structure of Bi
2
Te

3
, Sb

2
Te

3
 and Bi

2
Te

3

E
g
 (eV) Position # of carrier pockets References

Without SOI With SOI CBM VBM CBM VBM

Bi
2
Te

3

0.11 Z–F Z–F Indirect gap 6 6 15

0.37 0.13 Γ–Z a–Γ Indirect gap 2 6 16

0.29 0.11 a–Γ a–Γ Direct gap 6 6 17

0.39 0.09 Z–F a–Γ Indirect gap 6 6 29

0.27 0.11 Z-F Z-F Direct gap 6 6 28

0.15 (experimental) Indirect gap 6 6 33

Sb
2
Te

3

0.28 Γ–Z a–Γ Indirect gap 2 6 34

0.28 0.11 Γ–Z Z–F Indirect gap 2 6 29

0.027 0.13 Γ−Z Z-F Indirect gap 2 6 28

Bi
2
Se

3
0.185 0.260 Γ Z-F Indirect gap 1 6 28

E
g
: Band gap; SOI: spin-orbit interaction; CBM: Conduction band minimum; VBM: Valence band maximum.

Fig. 2. Band structure of Bi
2
Te

3
 without (red) and with

(blue) spin-orbit interaction. The k-path for the band
structure is also shown below.
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GGA.7,32) It is clearly seen that the spin-orbital interaction
(SOI) should be included in the calculation to produce the
exact number of carrier pockets, the position of the band
edges, and the band gap. Without the SOI, the conduction
band edge and the valence band edge are located at Γ,
whereas they move to the symmetry lines with the SOI. The
discrepancy between reports may originate from the differ-
ences in the lattice parameter used in the calculations and
in the simulation codes and parameters such as the
exchange-correlation potential and the use of van der Waals
interactions. 

The electrical transport properties of Bi
2
Te

3
 have also

been obtained with the Boltzmann transport equations
shown in Fig. 3. The BoltzTraP code was used to evaluate
the transport properties. In evaluating the Seebeck coeffi-
cient, the relaxation time is assumed to be constant (10−14 s),
and the rigid band assumption is used to calculate the prop-
erties with respect to the Fermi energy. The anisotropic
property is well seen in the power factor (S2

σ), which is due
to large anisotropic electrical conductivity, whereas a rela-
tively less anisotropic Seebeck coefficient was evaluated.
Experimentally, (S

xxx
 − S

zz
)/(S

xxx
) < 0.1 and  were

observed.35,36) The Seebeck coefficient is dependent on the
density of state effective mass, ,
whereas the electrical conductivity is inversely propor-

tional to the effective mass for the conductivity, 
. Thus, strong anisotropy in the elec-

trical conductivity is partially due to the ellipsoidal energy
surfaces of Bi

2
Te

3
. Another reason for the anisotropy is the

relaxation time difference. The layered-like crystal struc-
ture causes an anisotropic scattering rate, where the relax-
ation time along the trigonal axis is smaller than that along
the basal plane. 

2.2 Beyond the Constant Relaxation Time Approxi-

mation

The constant relaxation time approximation can be used
for the Seebeck coefficient, but evaluation of the electrical
conductivity should be done with some value of the relax-
ation time, for which we can fit the obtained electrical con-
ductivity with the experiment and then acquire the value of
the relaxation time. However, we need to overcome this
obstacle in materials design or materials discovery. As
shown in Fig. 4, there are various scattering mechanisms
including deformation potential acoustic phonon scattering,
ionized impurity scattering and so on. Among these scatter-
ings, polar optic phonon scattering and ionized impurity
scattering can be partly evaluated with the obtained param-
eters from the first-principles calculations such as the band
gap, effective mass, high frequency and static dielectric con-
stants.37) The strength of the electron-phonon scattering can
be also estimated in part from the first-principles calcula-
tions. For example, metals such as Cu and Ag have electron-
phonon scattering as the dominant scattering mechanism of
the electrical conduction at room temperature and above. In
this case, the electrical conductivity can be also described as

(13)

Here, θ
D
 is the Debye temperature; the constant  is

proportional to  , where  is the electron-phonon
coupling constant, and ω

p
 and ω

D
 are the plasma and Debye

frequencies, respectively.38-40) λ
tr
 may be considered as a

parameter to figure out the strength of the electron-phonon
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Fig. 3. The Seebeck coefficient and power factor of Bi
2
Te

3

obtained from the band structure. The relaxation
time=10-14 s is used to evaluate the electrical conduc-
tivity. Fig. 4. Various scattering mechanisms for electrons.
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scattering, especially deformation potential acoustic phonon
scattering. The value of λ

tr
 can be reduced to

(14)

where  when the temperature is greater
than 0.7θ

D
.40-42) With the calculations of the phonon density

of states with the first-principles calculations to obtain θ
D
,

the value of λ
tr
 can be estimated by comparing the results of

the Boltzmann transport equation and the experiment.40)

The estimated values of λ
tr
 for Cu and Ag are shown in

Table 2. 

3. Thermal Conductivity

 In this section, we briefly summarize the method to calcu-
late the phonon thermal conductivity of thermoelectric
materials by using the first-principles calculations. The
thermal conductivity is composed of the electronic thermal
conductivity and phonon thermal conductivity. The elec-
tronic thermal conductivity is computed from the electronic
transport tensor by equation 12 shown already. Phonon
transport properties are calculated based on the Boltzmann
Transport Equation (BTE) combined with the Relaxation
Time Approximation (RTA).38,46) Phonon frequencies and
phonon life times are computed based on the supercell
approach calculating the inter-atomic force constant.47-53)

The inter-atomic force constants(IFC) are obtained from the
density functional theory. Then, 2nd and 3rd order phonon
Hamiltonian is constructed. Then, the phonon life times and
phonon thermal conductivities are calculated using the
many body perturbation theory. Recently, the phonon ther-
mal conductivity codes PHONO3PY and ShengBTE have
become public to researchers.54-58) Herein, the phonon life
times and thermal conductivities are computed with the
PHONO3PY code.54-56)

To calculate the phonon thermal conductivity, we have to
calculate the phonon lifetime. When the phonon Hamilto-
nian is only composed of 2nd order terms, there is no pho-
non scattering, and the phonon thermal conductivity should
be proportional to the number of phonon channels. How-
ever, due to the anharmonicity in atomic potential surfaces,

the phonon Hamiltonians are expanded with 3rd or higher
order terms written as H = E

0
 + K + H

2
 + H

3
 + ··· , where E

O
,

K, H
n
 are the ground state total energy, the atomic kinetic

energy, and the n-body crystal potential terms.54-56) 
Note that  is the harmonic Hamiltonian

for the phonon and written as a sum of harmonic oscillators,
. And the anharnonic 3rd order

Hamiltonian is composed of three phonon processes, 
. The detailed equations can be

found in ref. 54. Here, λ represents the phonon mode of the
reciprocal vector q and phonon band index n. For 5-atom
Bi

2
Te

3
 primitive cell, there are N = 5 atoms with 3N-3 = 15-

3 = 12 phonon modes. Here, we can obtain the 3rd order
phonon Hamiltonians. Once the 3rd order Hamiltonian is
set, we can calculate the 3rd order phonon Hamiltonian,
and the phonon life time can be calculated in a perturbative
way. 54-56) Then, finally, we can compute the phonon thermal
conductivity. In the following paragraphs, we will introduce
the results of the phonon thermal conductivity calculations
for Si and Bi

2
Te

3
. The results are based on the use of the

VASP and PHONO3PY code.
For the Si FCC structure, there are two Si atoms in the

primitive cell. However, to compute the 2nd and 3rd order
IFCs, we need to generate many supercell configurations
containing atomic displacements. For the 2nd order, only
single atomic displacements are needed. However, for the
3rd order, two atomic displacements are needed. If we con-
sider the (4 × 4 × 4) supercell of Si FCC, then there are
N = 128 atoms. Then, there are 3N displacements for one Si.
Because we need two atomic displacements, there are huge
numbers of displacement configurations exceeding 106

(since N = 128, 3N × 3N = 9N2 = 147,456). Fortunately, due
to the symmetry operation,54-57) the number of configura-
tions can be reduced. In the PHONO3PY code, there are
only 416 configurations. In the case of the Bi

2
Te

3
 hexagonal

unit cell with 15 atoms, the number of configurations is very
large (5108) due to less symmetry in the lattice of Bi

2
Te

3
.

For low symmetry materials, there will be too many config-
urations. Then, it will be a good idea to reduce the number
of configurations to cutoff the large distance displacement
configurations. For Si, the evaluation of 5th neighborhood
or higher neighborhood interactions changes the phonon
thermal conductivity only negligibly.

Before generating displacement supercell configurations,
one needs to check whether the primitive or unit cell is fully
relaxed. Because the IFC analysis needs the atomic forces,
the force noise is very harmful in the calculation of the pho-
non modes and 3rd order calculations. Here, the atomic
forces for Si and Bi

2
Te

3
 are smaller than 0.00002 eVÅ-1. Also

note that the phonon thermal conductivity is very sensitive
to the lattice parameters, especially for thermoelectric
materials.59) Here, we fix the lattice parameter of Si to be
5.47 Å from the PBE calculations and those of Bi

2
Te

3
 to be

a = 4.3835 Å and c=30.487 Å from the experimental values.
Also note that the choice of exchange correlation energy will
alter the result of the phonon thermal conductivity.
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Table 2. Lattice Parameters Used in the Calculations, Estimated
Bulk Modulus (B), the Debye temperature (θ

D
), and

Electron-Phonon Coupling Constant (λ
tr
) for Ag and

Cu40)

a
0
 [Å] B [MPa] Φ

D
 [K] λ

tr

Ag 4.165  88.6 201.8 0.12140)

0.1243)

Cu 3.637 136.2 327.1

0.13540)

0.11644)

0.1343)

0.1445)
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We calculate the IFCs using the Si (4 × 4 × 4) FCC super-
cell and Bi

2
Te

3
 (4 × 4 × 1) hexagonal supercell. They contain

128 and 240 atoms. And the corresponding IFC supercell
configuration numbers are 416 and 5108. To reduce the
computational cost, we use the Γ point calculation for the
electron Brillouin zone integration. We choose the
PREC = ACCURATE tag for the VASP calculation and self-
consistent-field (SCF) loop criterion of EDIFF = 1 × 10−8 eV
following the suggestion of Togo.57) As a tip, we suggest stor-
ing the electronic wave function for the perfect non-dis-
placed supercell. Using it, the DFT force calculation time is
reduced in half. For us, we have 30 nodes, and each node
contains 12 cores. For Bi

2
Te

3
, because each configuration

takes about 400 to 500 seconds, the total calculation time is
about 9 days. If we use more k-point, the computational
time can take longer than several weeks or a month.

The 3rd order phonon process then can be calculated
using the 2nd and 3rd order IFCs. The PHONO3PY code
gathers the atomic forces for various configurations. The
next time consuming step is to calculate the phonon self-
energy. The phonons are scattered by three phonon pro-
cesses. In this work, we used the phonon reciprocal lattice q
mesh of 11 × 11 × 11 for Si and Bi

2
Te

3
. Because there are

113 q points, there are 113 × 113 × 113 three phonon pro-
cesses. Note that it is a very time and memory consuming
step if the unit cell is large, and the q mesh is fine. For the

Bi
2
Te

3
 case, in the irreducible Brillouin zone, there are 146

grid points. Each q grid point phonon self-energy calculation
is done in one node. For us, the total time of the calculations
was about 4 days. If the unit cell is large, the calculation can
crash, or the calculation time will be very long. 

Then, the phonon thermal conductivity is obtained by
gathering all phonon self-energies. Fig. 5(a) and (b) repre-
sent the phonon thermal conductivities of Si and Bi

2
Te

3

with various calculation methods. We consider three differ-
ent cases: PBE with a lattice parameter a = 5.47 Å, LDA
with a = 5.47 Å and LDA with a = 5.43 Å. We find that the
room temperature (300K) phonon thermal conductivity is
122 W/m/K for the PBE with a = 5.47 Å. The differences
among the phonon thermal conductivities are about 20 - 70%
for temperatures ranging from 10 to 100 K. When the tem-
perature is larger than 300 K, the difference becomes less
than 10% for PBE and LDA. However, for Bi

2
Te

3
, the choice

of exchange-correlation energy is very sensitive to the ther-
mal conductivity results. When we compared it to experi-
mental results, the PBE results seems to be more reliable.

Next, we examine the boundary effects on the phonon ther-
mal conductivities, especially for PBE calculations shown in
Fig. 6. The relaxation time of the phonon is modified following
Matthiessen’s rule written as , where

 and  are the phonon transition rate by pho-
non-phonon scattering and phonon-boundary scattering.

1
τ
---

1
τPhonon
-----------------

1
τBoundary
---------------------+=

1
τPhonon
-----------------

1
τBoundary
---------------------

Fig. 5. Phonon thermal conductivities of (a) Si and (b) Bi
2
Te

3
 are plotted against temperature. Be aware that (a) is a log-log plot,

while (b) is not.

Fig. 6. Phonon thermal conductivities with various boundary mean free paths (Ls) are plotted for (a) Si and (b) Bi
2
Te

3
. With

increasing L, the thermal conductivities are reduced. For Si, the effective size for the phonon thermal conductivity reduc-
tion is less than 1μm. For Bi

2
Te

3
, it is relatively small (less than 100 nm). Be aware that (a) and (b) are log-log plots.
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The phonon boundary scattering time is assumed to be the
boundary size (L) over the phonon group velocity (v

g
) writ-

ten as . For Si, the effect of boundary scatter-
ing is very large. For 100 nm boundary scattering, the
phonon thermal conductivity becomes about half, meaning
that the nanostructured bulk process will be a very effective
way to reduce the phonon thermal conductivity, as previ-
ously reported in ref. 60-62. 

For Bi
2
Te

3
, the phonon thermal conductivity with the

boundary mean free path is examined. The phonon thermal
conductivity curves are fitted using the following equations
κ
phonon 

= , and the prefactor κ
0 
and exponent α are sum-

marized in Table 3. The phonon thermal conductivity of
Bi

2
Te

3
 at 300 K is very small (1.4 W/m/K) and when there is

no boundary scattering, the phonon thermal conductivity is
proportional to the inverse temperature (T−1). When the
boundary scattering length is shortened, the phonon ther-
mal conductivity is decreased, and the temperature depen-
dency is weakened. The most effective boundary mean free
path size is smaller than 100 nm. Note that when L is
between 100 nm and 1 μm, the reduction of thermal conduc-
tivity is only 10 %. However, when 10 nm boundary scatter-
ing is introduced, the phonon thermal conductivity is
severely reduced to 50%. It is thought that, in Bi

2
Te

3
, the

smaller sized nanostructured bulk is needed for a classical
thermoelectric material such as Bi

2
Te

3
. When we considered

the average electron mean free path of Bi
2
Te

3
 (known to be

about 10 - 20nm), the optimal nanostructuring size is about
10 - 20 nm to minimize the reduction of electrical conductiv-
ity. A similar result is also found for PbTe.63,64)

4. Utilization of Computational Simulation 
in Discovering Novel Thermoelectric Materials

Based on the first-principles calculations, all thermoelec-
tric properties can be evaluated with the assumption that
the relaxation time is constant so that we can screen candi-
dates to discover novel thermoelectric materials. Madsen
who developed the BoltzTraP code reported the screening
procedures for thermoelectric materials containing the Sb
element.65) Gorai et al., reported on the computational explo-
ration of a binary compound of the A

1
B

1 
chemical space for

thermoelectric performance.66) 

5. Conclusions

We have shown that thermoelectric properties such as the
electrical conductivity, the Seebeck coefficient, and the ther-
mal conductivity could be evaluated from the electronic
band structures and the inter-atomic force constants both
obtained from the first-principles calculations within the
density functional theory. It was shown that a combina-
tional use of the simulator of electronic structures with the
electrical Boltzmann transport equation solver and phonon
calculation packages can give quantitative and comparative
results. However, there are also obstacles to be overcome.
The effect of scattering from various sources in existing real
materials could not be involved in most calculations so that
a few assumptions are used such as the relaxation time is
constant. Despite this rigorous assumption, the computa-
tional simulations can be used to screen materials to dis-
cover novel thermoelectric materials. With the
improvement of computational power, a new method for
treating scattering is being developed so that a time will
come in the near future when we can design thermoelectric
materials with less approximation. 
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