DOI QR코드

DOI QR Code

2D deformation in initially stressed thermoelastic half-space with voids

  • Abbas, Ibrahim A. (Department of Mathematics, Faculty of Science and Arts - Khulais, University Of Jeddah) ;
  • Kumar, Rajneesh (Department of Mathematics, Kurukshetra University)
  • Received : 2015.05.09
  • Accepted : 2016.01.12
  • Published : 2016.04.10

Abstract

The present investigation is to study the plane problem in initially stressed thermoelastic half-space with voids due to thermal source. Lord-Shulman (Lord and Shulman 1967) theory of thermoelasticity with one relaxation time has been used to investigate the problem. A particular type of thermal source has been taken as an application of the approach. Finite element technique has been used to solve the problem. The components of displacement, stress, temperature change and volume fraction field are computed numerically. The resulting quantities are depicted graphically for different values of initial stress parameter. The relaxation time and the initial stress parameter have a significant effect on all distributions.

Keywords

References

  1. Abbas, I.A. (2013), "A GN model for thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a circular hole", Appl. Math. Lett., 26(2), 232-239. https://doi.org/10.1016/j.aml.2012.09.001
  2. Abbas, I.A. (2014a), "Fractional order GN model on thermoelastic interaction in an infinite fibre-reinforced anisotropic plate containing a circular hole", J. Comput. Theor. Nanosci., 11(2), 380-384. https://doi.org/10.1166/jctn.2014.3363
  3. Abbas, I.A. (2014b), "Three-phase lag model on thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a cylindrical cavity", J. Comput. Theor. Nanosci., 11(4), 987-992. https://doi.org/10.1166/jctn.2014.3454
  4. Abbas, I.A. and Kumar, R. (2014), "Deformation due to thermal source in micropolar generalized thermoelastic half-space by finite element method", J. Comput. Theor. Nanosci., 11(1), 185-190. https://doi.org/10.1166/jctn.2014.3335
  5. Abbas, I.A. and Othman, M.I. (2011), "Generalized thermoelastic interaction in a fiber-reinforced anisotropic half-space under hydrostatic initial stress", J. Vib. Control, 18(2) 175-182. https://doi.org/10.1177/1077546311402529
  6. Abo-Dahab, S.M. and Singh, B. (2013), "Rotational and voids effect on the reflection of P waves from stress-free surface of an elastic half-space under magnetic field and initial stress without energy dissipation", Appl. Math. Model., 37(20-21), 8999-9011. https://doi.org/10.1016/j.apm.2013.04.033
  7. Acharya, D.P., Roy, I. and Sengupta, S. (2009), "Effect of magnetic field and initial stress on the propagation of interface waves in transversely isotropic perfectly conducting media", Acta Mechanics, 202(1), 35-45. https://doi.org/10.1007/s00707-008-0027-5
  8. Bachher, M., Sarkar, N. and Lahiri, N.A. (2014), "Generalized thermoelastic infinite medium with voids subjected to a instantaneous heat sources with fractional derivative heat transfer", Int. J. Mech. Sci., 89, 84-91. https://doi.org/10.1016/j.ijmecsci.2014.08.029
  9. Bachher, M., Sarkar, N. and Lahiri, N.A. (2015), "Fractional order thermoelastic interactions in an infinite voids material due to distributed time-dependent heat sources", Meccanica, 50(8), 2167-2178. https://doi.org/10.1007/s11012-015-0152-x
  10. Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351
  11. Birsan, M. (2000), "Existence and uniqueness of weak solution in the linear theory of elastic shells with voids", Libertas Math., 20, 95-105.
  12. Chirita, S. and Scalia, A. (2001), "On the spatial and temporal behavior in linear thermoelasticity of materials with voids", J. Therm. Stress., 24(5), 433-455. https://doi.org/10.1080/01495730151126096
  13. Ciarletta, M. and Scalia, A. (1993a), "On the nonlinear theory of non simple thermoelastic materials with voids", Z. Angew. Math. Mech., 73(2), 67-75. https://doi.org/10.1002/zamm.19930730202
  14. Ciarletta, M. and Scalia, A. (1993b), "On uniqueness and reciprocity in linear thermoelasticity of material with voids", Journal of Elasticity, 32(1), 1-17. https://doi.org/10.1007/BF00042245
  15. Ciarletta, M. and Scarpetta, E. (1995), "Some results on thermoelasticity for dielectric materials with voids", Z. Angew. Math. Mech., 75(9), 707-714. https://doi.org/10.1002/zamm.19950750912
  16. Ciarletta, M., Iovane, G. and Sumbatyan, M.A. (2003), "On stress analysis for cracks in elastic materials with voids", Int. J. Eng. Sci., 41(20), 2447-2461. https://doi.org/10.1016/S0020-7225(03)00236-2
  17. Cowin, S.C. and Nunziato, J.W. (1983), "Linear elastic materials with voids", J. Elasticity, 13(2), 25-147.
  18. Dhaliwal, R.S. and Wang, J. (1994), "Domain of influence theorem in the theory of elastic materials with voids", Int. J. Eng. Sci., 32(11), 1823-1828. https://doi.org/10.1016/0020-7225(94)90111-2
  19. Dhaliwal, R.S. and Wang, J. (1995), "A heat-flux dependent theory of thermoelasticity with voids", Acta Mech., 110(1), 33-39. https://doi.org/10.1007/BF01215413
  20. Fahmy, M.A. and El-Shahat, T.M. (2008), "The effect of initial stress and inhomogeneity on the thermoelastic stresses in a rotating anisotropic solid", Arch. Appl. Mech., 78(6), 431-442. https://doi.org/10.1007/s00419-007-0150-0
  21. Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elast., 2(1), 1-7. https://doi.org/10.1007/BF00045689
  22. Green, A. and Naghdi, P. (1991), "A re-examination of the basic postulates of thermomechanics", Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 432(1885), 171-194. https://doi.org/10.1098/rspa.1991.0012
  23. Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15(2), 253-264. https://doi.org/10.1080/01495739208946136
  24. Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elast., 31(3), 189-208. https://doi.org/10.1007/BF00044969
  25. Iesan, D. (1986), "A theory of thermoelastic materials with voids", Acta Mechanica, 60(1), 67-89. https://doi.org/10.1007/BF01302942
  26. Iesan, D. (1987), "A theory of initially stressed thermoelastic materials with voids", An. St. Univ. Iasi, S. I-a Matematica, 33, 167-184.
  27. Iesan, D. (2004), Thermoelastic Models of Continua, Springer, Berlin, Germany.
  28. Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
  29. Marin, M. (1997a), "A uniqueness result for body with voids in linear thermoelasticity", Rend. Mat. Appl., 17(7), 103-113.
  30. Marin, M. (1997b), "On the domain of influence in thermoelasticity of bodies with voids", Arch. Math. (Brno), 33(4), 301-308.
  31. Marin, M. (1998), "Contributions on uniqueness in thermoelastodynamics on bodies with voids", Cienc. Mat. (Havana), 16(2), 101-109.
  32. Marin, M. (1999), "An evolutionary equation in thermoelasticity of dipolar bodies", J. Math. Phys., 40(3), 1391-1399. https://doi.org/10.1063/1.532809
  33. Marin, M. (2009), "On the minimum principle for dipolar materials with stretch", Nonlinear Anal.: Real World Appl., 10(3), 1572-1578. https://doi.org/10.1016/j.nonrwa.2008.02.001
  34. Marin, M. and Salca, H. (1998), "A rrelation of Knopoff-de hoop type in thermoelasticity of Dipolar Bodies with voids", Theor. Appl. Mech., 24, 99-110.
  35. Nunziato, J.W. and Cowin, S.C. (1979), "A nonlinear theory of elastic materials with voids", Arch. Rat. Mech. Anal., 72(2), 175-201. https://doi.org/10.1007/BF00249363
  36. Pompei, A. and Scalia, A. (2002), "On the asymptotic spatial behavior in linear thermoelasticity of materials with voids", J. Therm. Stress., 25(2), 183-193. https://doi.org/10.1080/014957302753384414
  37. Puri, P. and Cowin, S.C. (1985), "Plane waves in linear elastic materials with voids", J. Elasticity, 15(2), 167-183. https://doi.org/10.1007/BF00041991
  38. Rusu, G. (1987), "On existence and uniqueness in thermoelasticity of materials with voids", B. Acad. Pol. Sci. Tech., 35(7-8), pp. 339-346.
  39. Saccomandi, G. (1992), "Some remarks about the thermoelastic theory of materials with voids", Rend. Mat. Appl., 12(7), 45-58.
  40. Scarpetta, E. (1995), "Well posedness theorems for linear elastic materials with voids", Int. J. Eng. Sci., 33(2), 151-161. https://doi.org/10.1016/0020-7225(94)00060-W
  41. Sharma, J.N. and Grover, D. (2012), "Thermoelastic vibration analysis of Mems/Nems plate resonators with voids", Acta Mechanica, 223(1), 167-187. https://doi.org/10.1007/s00707-011-0557-0
  42. Singh, B., Kumar, A. and Singh, J. (2006), "Reflection of generalized thermoelastic waves from a solid halfspace under hydrostatic initial stress", Appl. Math. Comput., 177(1), 170-177. https://doi.org/10.1016/j.amc.2005.10.045
  43. Tomar, S.K. and Ogden, R.W. (2014), "Two-dimensional wave propagation in a rotating elastic solid with voids", J. Sound Vib., 333(7), 1945-1952. https://doi.org/10.1016/j.jsv.2013.11.043
  44. Wriggers, P. (2008), Nonlinear Finite Element Methods, Berlin Heidelberg, Springer-Verlag.
  45. Zenkour, A.M. and Abbas, I.A. (2014), "Nonlinear transient thermal stress analysis of temperaturedependent hollow cylinders using a finite element model", Int. J. Struct. Stabil. Dyn., 14(7), 1450025. https://doi.org/10.1142/S0219455414500254

Cited by

  1. Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse vol.21, pp.4, 2016, https://doi.org/10.12989/scs.2016.21.4.791
  2. Magneto-electric interactions without energy dissipation for a fractional thermoelastic spherical cavity 2017, https://doi.org/10.1007/s00542-017-3643-y
  3. A DPL model of photo-thermal interaction in an infinite semiconductor material containing a spherical hole vol.133, pp.1, 2018, https://doi.org/10.1140/epjp/i2018-11814-6
  4. On dual-phase-lag magneto-thermo-viscoelasticity theory with memory-dependent derivative pp.1432-1858, 2018, https://doi.org/10.1007/s00542-018-4194-6
  5. Fractional order photo-thermo-elastic waves in a two-dimensional semiconductor plate vol.133, pp.6, 2018, https://doi.org/10.1140/epjp/i2018-12054-6
  6. Unified GN model of electro-thermoelasticity theories with fractional order of heat transfer pp.1432-1858, 2018, https://doi.org/10.1007/s00542-018-3917-z
  7. Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories vol.24, pp.3, 2017, https://doi.org/10.12989/scs.2017.24.3.297
  8. A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer vol.25, pp.2, 2016, https://doi.org/10.12989/scs.2017.25.2.177
  9. Two-dimensional problem for thermoviscoelastic materials with fractional order heat transfer vol.42, pp.10, 2019, https://doi.org/10.1080/01495739.2019.1623734
  10. Fractional order thermoelastic wave assessment in a two-dimension medium with voids vol.21, pp.1, 2020, https://doi.org/10.12989/gae.2020.21.1.085
  11. Memory response in elasto-thermoelectric spherical cavity vol.9, pp.4, 2020, https://doi.org/10.12989/csm.2020.9.4.325
  12. Fractional thermo-viscoelastic response of biological tissue with variable thermal material properties vol.43, pp.9, 2016, https://doi.org/10.1080/01495739.2020.1770643
  13. Interactions in a homogeneous isotropic modified couple stress thermoelastic solid with multi-dual-phase-lag heat transfer and two temperature vol.38, pp.2, 2016, https://doi.org/10.12989/scs.2021.38.2.213
  14. A study on thermo-elastic interactions in 2D porous media with-without energy dissipation vol.38, pp.5, 2016, https://doi.org/10.12989/scs.2021.38.5.523
  15. A dual-phase-lag theory of thermal wave in a porothermoelastic nanoscale material by FEM vol.79, pp.1, 2016, https://doi.org/10.12989/sem.2021.79.1.001
  16. Analytical solutions of the temperature increment in skin tissues caused by moving heating sources vol.40, pp.4, 2016, https://doi.org/10.12989/scs.2021.40.4.511
  17. Flow Analysis of Hybridized Nanomaterial Liquid Flow in the Existence of Multiple Slips and Hall Current Effect over a Slendering Stretching Surface vol.11, pp.12, 2016, https://doi.org/10.3390/cryst11121546