References
- Abbas, I.A. (2013), "A GN model for thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a circular hole", Appl. Math. Lett., 26(2), 232-239. https://doi.org/10.1016/j.aml.2012.09.001
- Abbas, I.A. (2014a), "Fractional order GN model on thermoelastic interaction in an infinite fibre-reinforced anisotropic plate containing a circular hole", J. Comput. Theor. Nanosci., 11(2), 380-384. https://doi.org/10.1166/jctn.2014.3363
- Abbas, I.A. (2014b), "Three-phase lag model on thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a cylindrical cavity", J. Comput. Theor. Nanosci., 11(4), 987-992. https://doi.org/10.1166/jctn.2014.3454
- Abbas, I.A. and Kumar, R. (2014), "Deformation due to thermal source in micropolar generalized thermoelastic half-space by finite element method", J. Comput. Theor. Nanosci., 11(1), 185-190. https://doi.org/10.1166/jctn.2014.3335
- Abbas, I.A. and Othman, M.I. (2011), "Generalized thermoelastic interaction in a fiber-reinforced anisotropic half-space under hydrostatic initial stress", J. Vib. Control, 18(2) 175-182. https://doi.org/10.1177/1077546311402529
- Abo-Dahab, S.M. and Singh, B. (2013), "Rotational and voids effect on the reflection of P waves from stress-free surface of an elastic half-space under magnetic field and initial stress without energy dissipation", Appl. Math. Model., 37(20-21), 8999-9011. https://doi.org/10.1016/j.apm.2013.04.033
- Acharya, D.P., Roy, I. and Sengupta, S. (2009), "Effect of magnetic field and initial stress on the propagation of interface waves in transversely isotropic perfectly conducting media", Acta Mechanics, 202(1), 35-45. https://doi.org/10.1007/s00707-008-0027-5
- Bachher, M., Sarkar, N. and Lahiri, N.A. (2014), "Generalized thermoelastic infinite medium with voids subjected to a instantaneous heat sources with fractional derivative heat transfer", Int. J. Mech. Sci., 89, 84-91. https://doi.org/10.1016/j.ijmecsci.2014.08.029
- Bachher, M., Sarkar, N. and Lahiri, N.A. (2015), "Fractional order thermoelastic interactions in an infinite voids material due to distributed time-dependent heat sources", Meccanica, 50(8), 2167-2178. https://doi.org/10.1007/s11012-015-0152-x
- Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351
- Birsan, M. (2000), "Existence and uniqueness of weak solution in the linear theory of elastic shells with voids", Libertas Math., 20, 95-105.
- Chirita, S. and Scalia, A. (2001), "On the spatial and temporal behavior in linear thermoelasticity of materials with voids", J. Therm. Stress., 24(5), 433-455. https://doi.org/10.1080/01495730151126096
- Ciarletta, M. and Scalia, A. (1993a), "On the nonlinear theory of non simple thermoelastic materials with voids", Z. Angew. Math. Mech., 73(2), 67-75. https://doi.org/10.1002/zamm.19930730202
- Ciarletta, M. and Scalia, A. (1993b), "On uniqueness and reciprocity in linear thermoelasticity of material with voids", Journal of Elasticity, 32(1), 1-17. https://doi.org/10.1007/BF00042245
- Ciarletta, M. and Scarpetta, E. (1995), "Some results on thermoelasticity for dielectric materials with voids", Z. Angew. Math. Mech., 75(9), 707-714. https://doi.org/10.1002/zamm.19950750912
- Ciarletta, M., Iovane, G. and Sumbatyan, M.A. (2003), "On stress analysis for cracks in elastic materials with voids", Int. J. Eng. Sci., 41(20), 2447-2461. https://doi.org/10.1016/S0020-7225(03)00236-2
- Cowin, S.C. and Nunziato, J.W. (1983), "Linear elastic materials with voids", J. Elasticity, 13(2), 25-147.
- Dhaliwal, R.S. and Wang, J. (1994), "Domain of influence theorem in the theory of elastic materials with voids", Int. J. Eng. Sci., 32(11), 1823-1828. https://doi.org/10.1016/0020-7225(94)90111-2
- Dhaliwal, R.S. and Wang, J. (1995), "A heat-flux dependent theory of thermoelasticity with voids", Acta Mech., 110(1), 33-39. https://doi.org/10.1007/BF01215413
- Fahmy, M.A. and El-Shahat, T.M. (2008), "The effect of initial stress and inhomogeneity on the thermoelastic stresses in a rotating anisotropic solid", Arch. Appl. Mech., 78(6), 431-442. https://doi.org/10.1007/s00419-007-0150-0
- Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elast., 2(1), 1-7. https://doi.org/10.1007/BF00045689
- Green, A. and Naghdi, P. (1991), "A re-examination of the basic postulates of thermomechanics", Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 432(1885), 171-194. https://doi.org/10.1098/rspa.1991.0012
- Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15(2), 253-264. https://doi.org/10.1080/01495739208946136
- Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elast., 31(3), 189-208. https://doi.org/10.1007/BF00044969
- Iesan, D. (1986), "A theory of thermoelastic materials with voids", Acta Mechanica, 60(1), 67-89. https://doi.org/10.1007/BF01302942
- Iesan, D. (1987), "A theory of initially stressed thermoelastic materials with voids", An. St. Univ. Iasi, S. I-a Matematica, 33, 167-184.
- Iesan, D. (2004), Thermoelastic Models of Continua, Springer, Berlin, Germany.
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
- Marin, M. (1997a), "A uniqueness result for body with voids in linear thermoelasticity", Rend. Mat. Appl., 17(7), 103-113.
- Marin, M. (1997b), "On the domain of influence in thermoelasticity of bodies with voids", Arch. Math. (Brno), 33(4), 301-308.
- Marin, M. (1998), "Contributions on uniqueness in thermoelastodynamics on bodies with voids", Cienc. Mat. (Havana), 16(2), 101-109.
- Marin, M. (1999), "An evolutionary equation in thermoelasticity of dipolar bodies", J. Math. Phys., 40(3), 1391-1399. https://doi.org/10.1063/1.532809
- Marin, M. (2009), "On the minimum principle for dipolar materials with stretch", Nonlinear Anal.: Real World Appl., 10(3), 1572-1578. https://doi.org/10.1016/j.nonrwa.2008.02.001
- Marin, M. and Salca, H. (1998), "A rrelation of Knopoff-de hoop type in thermoelasticity of Dipolar Bodies with voids", Theor. Appl. Mech., 24, 99-110.
- Nunziato, J.W. and Cowin, S.C. (1979), "A nonlinear theory of elastic materials with voids", Arch. Rat. Mech. Anal., 72(2), 175-201. https://doi.org/10.1007/BF00249363
- Pompei, A. and Scalia, A. (2002), "On the asymptotic spatial behavior in linear thermoelasticity of materials with voids", J. Therm. Stress., 25(2), 183-193. https://doi.org/10.1080/014957302753384414
- Puri, P. and Cowin, S.C. (1985), "Plane waves in linear elastic materials with voids", J. Elasticity, 15(2), 167-183. https://doi.org/10.1007/BF00041991
- Rusu, G. (1987), "On existence and uniqueness in thermoelasticity of materials with voids", B. Acad. Pol. Sci. Tech., 35(7-8), pp. 339-346.
- Saccomandi, G. (1992), "Some remarks about the thermoelastic theory of materials with voids", Rend. Mat. Appl., 12(7), 45-58.
- Scarpetta, E. (1995), "Well posedness theorems for linear elastic materials with voids", Int. J. Eng. Sci., 33(2), 151-161. https://doi.org/10.1016/0020-7225(94)00060-W
- Sharma, J.N. and Grover, D. (2012), "Thermoelastic vibration analysis of Mems/Nems plate resonators with voids", Acta Mechanica, 223(1), 167-187. https://doi.org/10.1007/s00707-011-0557-0
- Singh, B., Kumar, A. and Singh, J. (2006), "Reflection of generalized thermoelastic waves from a solid halfspace under hydrostatic initial stress", Appl. Math. Comput., 177(1), 170-177. https://doi.org/10.1016/j.amc.2005.10.045
- Tomar, S.K. and Ogden, R.W. (2014), "Two-dimensional wave propagation in a rotating elastic solid with voids", J. Sound Vib., 333(7), 1945-1952. https://doi.org/10.1016/j.jsv.2013.11.043
- Wriggers, P. (2008), Nonlinear Finite Element Methods, Berlin Heidelberg, Springer-Verlag.
- Zenkour, A.M. and Abbas, I.A. (2014), "Nonlinear transient thermal stress analysis of temperaturedependent hollow cylinders using a finite element model", Int. J. Struct. Stabil. Dyn., 14(7), 1450025. https://doi.org/10.1142/S0219455414500254
Cited by
- Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse vol.21, pp.4, 2016, https://doi.org/10.12989/scs.2016.21.4.791
- Magneto-electric interactions without energy dissipation for a fractional thermoelastic spherical cavity 2017, https://doi.org/10.1007/s00542-017-3643-y
- A DPL model of photo-thermal interaction in an infinite semiconductor material containing a spherical hole vol.133, pp.1, 2018, https://doi.org/10.1140/epjp/i2018-11814-6
- On dual-phase-lag magneto-thermo-viscoelasticity theory with memory-dependent derivative pp.1432-1858, 2018, https://doi.org/10.1007/s00542-018-4194-6
- Fractional order photo-thermo-elastic waves in a two-dimensional semiconductor plate vol.133, pp.6, 2018, https://doi.org/10.1140/epjp/i2018-12054-6
- Unified GN model of electro-thermoelasticity theories with fractional order of heat transfer pp.1432-1858, 2018, https://doi.org/10.1007/s00542-018-3917-z
- Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories vol.24, pp.3, 2017, https://doi.org/10.12989/scs.2017.24.3.297
- A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer vol.25, pp.2, 2016, https://doi.org/10.12989/scs.2017.25.2.177
- Two-dimensional problem for thermoviscoelastic materials with fractional order heat transfer vol.42, pp.10, 2019, https://doi.org/10.1080/01495739.2019.1623734
- Fractional order thermoelastic wave assessment in a two-dimension medium with voids vol.21, pp.1, 2020, https://doi.org/10.12989/gae.2020.21.1.085
- Memory response in elasto-thermoelectric spherical cavity vol.9, pp.4, 2020, https://doi.org/10.12989/csm.2020.9.4.325
- Fractional thermo-viscoelastic response of biological tissue with variable thermal material properties vol.43, pp.9, 2016, https://doi.org/10.1080/01495739.2020.1770643
- Interactions in a homogeneous isotropic modified couple stress thermoelastic solid with multi-dual-phase-lag heat transfer and two temperature vol.38, pp.2, 2016, https://doi.org/10.12989/scs.2021.38.2.213
- A study on thermo-elastic interactions in 2D porous media with-without energy dissipation vol.38, pp.5, 2016, https://doi.org/10.12989/scs.2021.38.5.523
- A dual-phase-lag theory of thermal wave in a porothermoelastic nanoscale material by FEM vol.79, pp.1, 2016, https://doi.org/10.12989/sem.2021.79.1.001
- Analytical solutions of the temperature increment in skin tissues caused by moving heating sources vol.40, pp.4, 2016, https://doi.org/10.12989/scs.2021.40.4.511
- Flow Analysis of Hybridized Nanomaterial Liquid Flow in the Existence of Multiple Slips and Hall Current Effect over a Slendering Stretching Surface vol.11, pp.12, 2016, https://doi.org/10.3390/cryst11121546