• Title/Summary/Keyword: thermal power

Search Result 4,958, Processing Time 0.037 seconds

Determining thermal comfort properties of coverall worn in the atomic power plant using a sweating thermal manikin and ISO 7730 (발한 Thermal manikin과 국제 표준 7730을 이용한 원자력 발전소 작업복의 열적 쾌적성 판별)

  • 홍성애
    • Journal of the Ergonomics Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.91-103
    • /
    • 1996
  • For determining thermal comfort properties of work suit in an atomic power plant, three different coverall ensembles (PVE, PET/Rayon, PP Nonwoven) were selected and the resistance to dry and evaporative heat transfer were measured for each ensemble by using a sweating thermal manikin. Also, PMV (Predicted Mean Vote) and PPD(Predicted Percentage of Dissatisfied) indices were predicted according to ISO 7730. As a result, ideal environmental conditions in an atomic power plant were suggested to make workers feel thermally comfortable. In addition, ideal intrinsic insulation values of coverall ensembles as a work suit under the present environmental conditions in the at6omic power plant were provided. The information given in this paper can be used to control environmental conditions in the atomic power plant thermally comfortable and to select a proper work suit for providing thermal comfort to the workers.

  • PDF

A Real Time Model of Dynamic Thermal Response for 120kW IGBT Inverter (120kW급 IGBT 인버터의 열 응답 특성 실시간 모델)

  • Im, Seokyeon;Cha, Gangil;Yu, Sangseok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.184-191
    • /
    • 2015
  • As the power electronics system increases the frequency, the power loss and thermal management are paid more attention. This research presents a real time model of dissipation power with junction temperature response for 120kw IGBT inverter which is applied to the thermal management of high power IGBT inverter. Since the computational time is critical for real time simulation, look-up tables of IGBT module characteristic curve are implemented. The power loss from IGBT provides a clue to calculate the temperature of each module of IGBT. In this study, temperature of each layer in IGBT is predicted by lumped capacitance analysis of layers with convective heat transfer. The power loss and temperature of layers in IGBT is then communicated due to mutual dependence. In the dynamic model, PWM pulses are employed to calculation real time IGBT and diode power loss. Under Matlab/Simulink$^{(R)}$ environment, the dynamic model is validated with experiment. Results showed that the dynamic response of power loss is closely coupled with effective thermal management. The convective heat transfer is enough to achieve proper thermal management under guideline temperature.

Influences of Power Fluctuation on In-Situ Ground Thermal Response Testing (지중 열반응 현장시험에서 소비전력 변동의 영향)

  • Kim, Jin-Sang;Park, Keun-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.707-712
    • /
    • 2006
  • Knowing the ground thermal conductivity is very importnat in designing ground heat exchangers. Knowledge of the ground soil and rock composition information dose not guarantee the prediction of accurate thermal information. In Situ testing of ground heat exchangers is becoming popular. However, in situ testing are performed at construction sites in real life. Adequate data collection and analysis are not easy mainly due to poor power quality. Power fluctuation also causes the fluctuation of received data. The power quality must be maintained during the entire in situ testing processes. To accurately analyse the test data, the understanding of the response of the power fluctuation is essential. Testing under the power quality varied by tester is very difficult. Analyzing power variation by numerical simulation is a realistic option. By varying power in a sinosuidal manner, its effects on predicting thermal conductivity from thermal response plots made from the test data are examined.

  • PDF

Calculation of Required Coolant Flow Rate for Photovoltaic-thermal Module Using Standard Meteorological Data and Thermal Analysis (표준기상 데이터와 열해석을 이용한 태양광열 모듈의 필요 냉각수량 산출)

  • Lee, Cheonkyu;Jeong, Hyo Jae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.18-22
    • /
    • 2022
  • Photovoltaics (PV) power generation efficiency is affected by meteorological factors such as temperature and wind speed. In general, it is known that the power generation amount decreases because photovoltaics panel temperature rises and the power generation efficiency decreases in summer. Photovoltaics Thermal (PVT) power generation has the ad-vantage of being able to produce heat together with power, as well as preventing the reduction in power generation efficien-cy and output due to the temperature rise of the panel. In this study, the amount of heat collected by season and time was calculated for photovoltaics thermal modules using the International Weather for Energy Calculations (IWEC) data provided by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). Based on this, we propose a method of predicting the temperature of the photovoltaics panel using thermal analysis and then calculating the flow rate of coolant to improve power generation efficiency. As the results, the photovoltaics efficiencies versus time on January, April, July, and October in Jeju of the Republic of Korea were calculated to the range of 15.06% to 17.83%, and the maxi-mum cooling load and flow rate for the photovoltaics thermal module were calculated to 121.16 W and 45 cc/min, respec-tively. Though this study, it could be concluded that the photovoltaics thermal system can be composed of up to 53 modules with targeting the Jeju, since the maximum capacity of the coolant circulation pump of the photovoltaics thermal system applied in this study is 2,400 cc/min.

Thermal-Hydraulic Analysis Methodology of Nuclear Power Plant Steam Generator (원전 증기발생기 열유동 해석법)

  • Choi Seok-Ki;Kim Seong-O;Choi Hoon-Ki
    • Journal of computational fluids engineering
    • /
    • v.7 no.2
    • /
    • pp.43-52
    • /
    • 2002
  • This paper presents the numerical methodology of ATHOS3 code for thermal hydraulic analysis of steam generators in nuclear power plant. Topics include porous media approach, governing equations, physical models and correlations for solid-to-fluid interaction and heat transfer, and numerical solution scheme. The ATHOS3 code is applied to the thermal hydraulic analysis of steam generator in the Korea Kori Unit-1 nuclear power plant and the computed results are presented

A Study of Coupled Electromagnetic-Thermal Field Analysis for Temperature Rise Prediction of Power Transformer (전력용 변압기의 온도상승 예측을 위한 전자계-열계 결합해석기법 연구)

  • Ahn, Hyun-Mo;Kim, Min-Soo;Song, Jae-Sung;Hahn, Sung-Chin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1838-1845
    • /
    • 2011
  • This paper deals with coupled electromagnetic-thermal field analysis for thermal fluid analysis of oil immersed power transformer. Electric power losses are calculated from electromagnetic field analysis and are used as input source of thermal field analysis based on computational fluid dynamics(CFD). Particularly, In order to accurately predict the temperature rise in oil immersed power transformer, the thermal problem should be coupled with the electromagnetic problem. Moreover, to reduce analysis region, the heat transfer coefficient is applied to boundary surface of the power transformer model. The coupling method results are compared with the experimental values for verifying the validity of the analysis. The predicted temperature rises show good agreements with the experimental values.

Thermal Management Study of PEMFC for Residential Power Generation (가정용 연료전지 시스템의 열관리 해석)

  • Yu, Sang-Seok;Lee, Young-Duk;Ahn, Kook-Young
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2839-2844
    • /
    • 2008
  • A PEMFC(proton exchange membrane fuel cell) is a good candidate for residential power generation to be cope with the shortage of fossil fuel and green house gas emission. The attractive benefit of the PEMFC is to produce electric power as well as hot water for home usage. Typically, thermal management of vehicular PEMFC is to reject the heat from the PEMFC to the ambient air. Different from that, the thermal management of PEMFC for RPG is to utilize the heat of PEMFC so that the PEMFC can be operated at its optimal efficiency. In this study, dynamic thermal management system is modeled to understand the response of the thermal management system during dynamic operation. The thermal management system of PEMFC for RPGFC is composed of two cooling circuits, one for controling the fuel cell temperature and the other for heating up the water for home usage. Dynamic responses and operating strategies of the PEMFC system are investigated during load changes.

  • PDF

Simulation of an Absorption Power Cycle for Maximizing the Power Output of Low-Temperature Geothermal Power Generation (저온 지열발전의 출력 극대화를 위한 흡수식 동력 사이클의 시뮬레이션)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Lee, Young-Soo;Yoon, Hyung-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.145-151
    • /
    • 2010
  • In this study, an absorption power cycle, which can be used for a low-temperature heat source driven power cycle such as geothermal power generation, was investigated and optimized in terms of power by the simulation method. A steady-state simulation model was adopted to analyze and optimize its performance. Simulations were carried out for the given heat source and sink inlet temperatures, and the given flow rates were based on the typical power plant thermal-capacitance-rate ratio. The cycle performance was evaluated for two independent variables: the ammonia fraction at the separator inlet and the maximum cycle pressure. Results showed that the absorption power cycle can generate electricity up to about 14 kW per 1 kg/s of heat source when the heat source temperature, heat sink temperature, and thermal-capacitance-rate ratio are $100^{\circ}C$, $20^{\circ}C$, and 5, respectively.

In-situ Measurement Technique for Thermal Performance of Building Wall Excluding Surface Heat Transfer Resistance (표면 열전달 저항이 배제된 건물 벽체 열성능 현장 측정 기법)

  • Kim, Seungchul;Kim, Sangbong;Nah, Hwanseon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.2
    • /
    • pp.151-155
    • /
    • 2020
  • In this paper, a new experimental method to determine the thermal resistance of building wall was proposed by improving the heat flow method (HFM) based on the air-surface temperature ratio theory. This technique measures the thermal resistance of the wall excluding the inner and outer surface heat transfer resistance. Unlike conventional HFM, this value can be compared directly with the theoretical reference value. Its performance was verified using three mock-up structures with a theoretical thermal transmittance of 0.5, 3.3, and 0.18 W/㎡·K respectively. After measuring the variations in the temperature and heat transfer rate of the mock-ups for 383 hours, the thermal transmittances were determined to be 0.47, 3.10, and 0.18 W/㎡·K, which corresponded to errors of 5.2, 6.2 and 0.5%, respectively, compared to the theoretical values. It was concluded that this technique can directly compare the thermal resistance of the wall between the existent stage and initial stage after construction.