• Title/Summary/Keyword: thermal physical properties

Search Result 1,090, Processing Time 0.03 seconds

Characterization and Application for Hydrogel Lens Material of Acrylate Monomers Containing Hydroxyl Group (하이드록시기를 포함한 아크릴레이트계 모노머들의 하이드로젤 친수성 렌즈 소재로의 응용 및 특성)

  • Lee, Min-Jae;Kim, Tae-Hun;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.3
    • /
    • pp.181-186
    • /
    • 2016
  • The hydrophilic ophthalmic lens with addition of 2-hydroxyethyl acrylate (HEA), 2-hydroxyethyl methacrylate (HEMA), hydroxypropyl methacrylate (HPMA) and Ag nanoparticles were manufactured. And also, the cross-linker ethylene glycol dimethacrylate (EGDMA) and the initiator azobisisobutyronitrile (AIBN) were used for polymerization. The polymerization of the hydrogel lens material was conducted through thermal polymerization in 100 ℃ for 1h. The optical and physical characteristics of hydrogel lens were evaluated by measuring water content, refractive index and optical transmittance. The water content of sample containing HEA, HEMA and HPMA was in the average of 82.12%, 37.06% and 21.57%, respectively. And also, refractive index of the sample containing HEA, HEMA and HPMA was in the average of 1.3540, 1.4330 and 1.4649, respectively. In case of the optical properties of the sample, the results showed that the near-UV transmittance was 82.67%, 80.32% and 79.83%, and the visible transmittance was 89.72%, 88.24% and 86.89%, respectively. And also, optical transmittance of the sample containing Ag nanoparticles showed that the near-UV transmittance of 10.59% and visible transmittance of 43.74% were obtained. From the results, the molecular length influenced on the water content and refractive index of the polymerized material.

Progress in Composite Polymer Membrane for Application as Separator in Lithium Ion Battery (리튬 이온 전지의 분리막으로 사용하기 위한 복합 고분자 막의 동향)

  • Oh, Seok Hyeon;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.228-241
    • /
    • 2020
  • Separators, which produces physical layer between a cathode and anode, are getting enormous attention as the quality of the separator determines the performance of lithium ion batteries (LIBs). Porous membranes based on polyethylene (PE) and polypropylene (PP) are generally utilized as the separator of LIBs because of their high electrochemical stability and suitable mechanical strength. However, low thermal resistance and wettability of PE and PP membranes limited the potential of LIBs. Operating at the temperature exceeding the melting point of membranes, the separators change their structures which lead to short circuit of LIBs. Low wettability of the separators corresponds to low ionic conductivity which increases the cell resistance. To overcome these weaknesses of PE and PP separators, different types of separator were prepared by co-electrospinning, applying coating layer, forming core shell around membrane, and papermaking method. The synthesized separator greatly enhanced the heat resistance and wettability of separator and mechanical properties like flexibility and tensile strength. In this review different type of polymer membrane used as separator in lithium ion battery are discussed.

Enhanced Mechanical Properties and Thermal Stability of CrAlN Coatings by Interlayer Deposition (중간층 증착에 의한 CrAlN 코팅의 기계적 물성 및 내열성 향상에 관한 연구)

  • Kim, Hoe-Geun;Ra, Jeong-Hyeon;Song, Myeon-Gyu;Lee, Sang-Yul
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.100-100
    • /
    • 2016
  • 물리기상증착방법 (Physical vapor deposition)에 의하여 합성된 천이금속 질화물 박막은 경도, 내마모성 등 절삭공구의 성능을 향상시키며, Ti-Al-N, Ti-Zr-N, Zr-Al-N, Cr-Si-N 등의 3원계 경질 박막에 대한 연구가 지속적으로 이루어지고 있다. 이중에서도 CrAlN 코팅은 높은 경도, 낮은 표면 조도 등의 우수한 기계적 특성 이외에 고온에서 안정한 합금상 형성으로 인하여 우수한 내열성을 보유하여 공구 코팅으로의 적용 가능성이 크다. 그러나 최근 공구사용 환경의 가혹화로 인하여 코팅의 내마모성 및 내열성 등의 물성 향상을 통한 공구의 수명 향상이 필요시 되고 있으며, 코팅에 적합한 중간층을 합성함으로써 공구 코팅으로의 적용 가능성을 높이는 연구들이 진행되고 있다. 본 연구에서는 CrAlN 코팅의 물성을 향상시키기 위해 CrAlN 코팅과 WC-Co 6wt.% 모재 사이에 CrN, CrZrN, CrN/CrZrSiN 등의 다양한 중간층을 합성하였으며, 중간층을 포함한 모든 코팅의 두께는 $3{\mu}m$ 로 제어하였다. 합성된 코팅의 미세조직, 경도 및 탄성계수, 내모성을 분석하기 위해 field emission scanning electron microscopy(FE-SEM), nano-indentation, ball-on-disk 마모시험기 및 ${\alpha}-step$을 사용하였다. 코팅의 내열성을 확인하기 위해 코팅을 furnace에 넣어 공기중에서 500, 600, 700, 800, 900, $1,000^{\circ}C$로 30분 동안 annealing 한 후에 nano-indentation을 사용하여 경도를 측정하였다. CrAlN 코팅을 나노 인덴테이션으로 분석한 결과, 모든 코팅의 경도(35.5-36.2 GPa)와 탄성계수(424.3-429.2 GPa)는 중간층의 종류에 상관없이 비슷한 값을 보인 것으로 확인됐다. 그러나, 코팅의 마찰계수는 중간층의 종류에 따라 다른 값을 보였으며, CrN/CrZrSiN 중간층을 증착한 CrAlN 코팅의 마찰계수는 0.34로 CrZrN 중간층을 증착한 CrAlN 코팅의 마찰계수(0.41)에 비해 낮은 값을 보였다. 또한, 코팅의 마모율 및 마모폭도 비슷한 경향을 보인 것으로 보아, CrN/CrZrSiN 중간층을 합성한 CrAlN 코팅의 내마모성이 상대적으로 우수한 것으로 판단된다. 이것은 중간층의 H/E ratio가 코팅의 내마모성에 미치는 영향에 의한 결과로 사료된다. H/E ratio는 파단시의 최대 탄성 변형율로써, 모재/중간층/코팅의 H/E ratio 구배에 따라 코팅 내의 응력의 완화 정도가 변하게 된다. WC 모재 (H/E=0.040)와 CrAlN 코팅(H/E=0.089) 사이에서 CrN, CrZrSiN 중간층의 H/E ratio 는 각각 0.076, 0.083 으로 모재/중간층/코팅의 H/E ratio 구배가 점차 증가함을 확인 할 수 있었고, 일정 응력이 지속적으로 가해지면서 진행되는 마모시험중에 CrN과 CrZrSiN 중간층이 WC와 CrAlN 코팅 사이에서 코팅 내부의 응력구배를 완화시키는 역할을 함으로써 CrAlN 코팅의 내마모성이 향상된 것으로 판단된다. 모든 코팅을 열처리 후 경도 분석결과, CrN/CrZrSiN 중간층을 증착한 CrAlN 코팅은 $1,000^{\circ}C$까지 약 28GPa의 높은 경도를 유지한 것으로 확인 되었고, 이는 CrZrSiN 중간층 내에 존재하는 $SiN_x$ 비정질상의 우수한 내산화성에 의한 결과로 판단된다.

  • PDF

Direct Growth of CNT on Cu Foils for Conductivity Enhancement and Their Field Emission Property Characterization (전도성 향상을 위한 구리호일 위 CNT의 직접성장 및 전계방출 특성 평가)

  • Kim, J.J.;Lim, S.T.;Kim, G.H.;Jeong, G.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.155-163
    • /
    • 2011
  • Carbon nanotubes (CNT) have been attracted much attention since they have been expected to be used in various areas by virtue of their outstanding physical, electrical, and chemical properties. In order to make full use of their prominent electric conductivity in some areas such as electron emission sources, device interconnects, and electrodes in energy storage devices, direct growth of CNT with vertical alignment is definitely beneficial issue because they can maintain mechanical stability and high conductivity at the interface between substrates. Here, we report direct growth of vertically aligned CNT (VCNT) on Cu foils using thermal chemical vapor deposition and characterize the field emission property of the VCNT. The VCNT's height was controlled by changing the growth temperature, growth time, and catalytic layer thickness. Optimum growth condition was found to be $800^{\circ}C$ for 20 min with acetylene and hydrogen mixtures on Fe catalytic layer of 1 nm thick. The diameter of VCNT grown was smaller than that of usual multi walled CNT. Based on the result of field emission characterization, we concluded that the VCNT on Cu foils can be useful in various potential applications where high conductivity through the interface between CNT and substrate is required.

Thermal Characteristics of Waste Organic Sludges Discharged from an Chemical Product Manufacturing Industry (화학제품제조업에서 배출되는 폐 유기성슬러지의 열적 특성)

  • Kim, Min-Choul;Lee, Gang-Woo;Lee, Man-Sig;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1745-1753
    • /
    • 2008
  • We analyzed the physical and chemical properties such as proximate analysis, ultimate analysis, heating values, thermogravimetric analysis, and combustion test for the organic sludge discharged from chemical and petrochemical product manufacturing industries in the industrial complex. The average combustible and ash content of organic sludges from chemical and petrochemical product manufacturing industries were 17.42%, 7.45%, and 18.25%, 4.22%, respectively. The C, H, O, N, and S compositions for chemical and petrochemical product manufacturing industries were 33.06, 4.34, 24.81, 5.18, and 0.72%. And those compositions for petrochemical product manufacturing industries were 36.58, 4.74, 26.79, 5.09, and 0.49%, respectively. From the TGA test, the minimum temperature for combustion of the sludge discharged from B company was $700^{\circ}C$ for direct use for energy and 2 sludges(F and N companies) were about $600^{\circ}C$. According to the basic combustion test, high concentration of CO was formed because oxidation and pyrolysis reaction take place in the batch type reactor at the same time. From this phenomena we could obtain the significant data for the overheating and breakage of furnace.

Body Composition and Firing Temperature of Ancient Pottery Excavated in Chonnam Province (전남지역에서 출토된 고대 도자기의 태토조성과 소성온도)

  • Kang, Kyeong-In;Jung, Chang-Ju
    • Journal of Conservation Science
    • /
    • v.6 no.1 s.7
    • /
    • pp.15-30
    • /
    • 1997
  • The chamical and physical properties of the fragments of an ancient pottery such as earthenware, gliazed pottery and celadon excavated in Chonnam province has been investigated by X-ray diffraction inductively coupled plasma spectroscopy(ICP), thermal mechanical analysis(TMA). Glazed pottery fragments of Chonnam province are cotaining Fe2O3 $4\~7\%$ by the analyis of ICP, firing temperature range was presumed to $1100-1150^{\circ}C$ by TMA. Celadon fragments of Chonnam province are containing Fe2O3 $2\~3\%$ by the analyis of ICP, firing temperature range was presumed to $1140\~1200^{\circ}C$ by TMA. The charateristics in the trace element composition of an ancient pottery of Chonnam provinceis are similar, it is an reflection of similar geological charateristics. The charateristic elements of Chonnam provincical ancient pottery were Rb, Sr, V, Zr, Y, Nd, Sc, La, Ce, Nb, Sm, Eu, Dy and Yb of the analyzed 21 trace elements. By Fe2O3-Zn ditribution diagram, potteries excavated in Yong-am, celadons excavated in Haenam, Kangjin, Buan and glazed pottery excavated in Hae-nam are grouped into the same class.

  • PDF

Implementation of Roughness-Induced Turbulent Transition Model on Inflight Icing Code (표면 조도를 고려한 난류 천이 모델의 항공기 결빙 해석자에 대한 적용 연구)

  • Min, Seungin;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • In this study, the effect of surface roughness distribution and its influence on the inflight icing code was investigated. Previous numerical studies focused on the magnitude of surface roughness, and the effects were only addressed in terms of changes in thermal boundary layers with fully turbulent assumption. In addition, the empirical formula was used to take account the turbulent transition due to surface roughness, which was regarded as reducing the accuracy of ice shape prediction. Therefore, in this study, the turbulent transition model based on the two-equation turbulence model was applied to consider the effects of surface roughness. In order to consider the effect of surface roughness, the transport equation for roughness amplification parameter was applied, and the surface roughness distribution model was implemented to consider the physical properties. For validation, the surface roughness, convective heat transfer coefficient, and ice shape were compared with experimental results and other numerical methodology. As a result, it was confirmed that the excessive prediction of the heat transfer coefficient at the leading edge and the ice horn shape at the bottom of the airfoil were improved accordingly.

Performance of Pentacene-based Thin-film Transistors Fabricated at Different Deposition Rates (증착 속도에 따른 펜타센 박막 트랜지스터의 성능 연구)

  • Hwang, Jinho;Kim, Duri;Kim, Meenwoo;Lee, Hanju;Babajanyan, Arsen;Odabashyan, Levon;Baghdasaryan, Zhirayr;Lee, Kiejin;Cha, Deokjoon
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1192-1195
    • /
    • 2018
  • We studied the electrical properties of organic thin-film transistors (OTFTs) fabricated at different deposition rates by measuring the field-effect mobility and the threshold voltages. As the active layer, pentacene thin film with a thickness of 50 nm was deposited at a rate of $0.05{\AA}/s$ to $1.14{\AA}/s$. The thickness of the drain-source gold electrode was 50 nm. The mobility was $1.9{\times}10^{-1}cm^2/V{\cdot}s$ at a deposition rate of $0.05{\AA}/s$, the mobility increased to $5.2{\times}10^{-1}cm^2/V{\cdot}s$ when the deposition rate was increased to $0.4{\AA}/s$, and then the mobility decreased to $6.5{\times}10^{-1}cm^2/V{\cdot}s$ when the deposition rate decreased to $1.14{\AA}/s$. Thus, the mobility of pentacene OTFTs was observed to depend on the thermal deposition rate.

Synthesis and Characterization of Zeolite Using Water Treatment Sludge (정수슬러지를 이용한 제올라이트의 합성 및 특성연구)

  • Ko, Hyun Jin;Ko, Yong Sig
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.263-269
    • /
    • 2020
  • Zeolite was synthesized hydrothermally using the water-treatment sludge, and the effects of various synthesis parameters like reaction temperature, reaction time, and Na2O/SiO2 molar ratio on the crystallization of zeolite were investigated. Crystal structure, physical property, and thermal stability of zeolite crystals were characterized by X-ray powder diffraction, FTIR spectroscopy, BET nitrogen adsorption, and TGA measurements. The removal efficiencies of nitrogen in ammonia, heavy metal ions, and TOC were calculated to evaluate zeolite's adsorption capacity. The primary chemical composition of water-treatment sludge was 28.79% Al2O3 and 27.06% SiO2. The zeolites were synthesized by merely employing the water-treatment sludge as silica and alumina sources without additional chemicals. Zeolite crystals synthesized through the water-treatment sludge were confirmed as an A-type zeolite structure. Zeolite A had the highest crystallinity obtained from a gel with the molar composition 2.1Na2O-Al2O3-1.6SiO2-65H2O after 5 h at a temperature of 90 ℃. The specific surface area of zeolite obtained was 55 ㎡ g-1, which was higher than commercial zeolite A. The removal efficiency of nitrogen in ammonia was 68% after 3 h of reaction time, while the removal efficiencies of Pb2+ and Cd2+ ions were 99.1% and 99.3%, respectively. These results indicate active ion exchange between Pb2+ or Cd2+ ion and Na+ ion in the zeolite framework. The adsorption experiments on the different zeolite addition conditions were performed for 3 h with 300 ppm humic acid. Based on the results, TOC's highest efficiency was 83% when 5 g of zeolite was added.

An Experimental Study on the Carbonation Depth of Cement Paste Using Carbonation Reaction Accelerator (탄산화 반응 촉진제를 이용한 시멘트 페이스트의 탄산화 깊이에 관한 실험적 연구)

  • Seok-Man Jeong;Wan-Hee Yang;Dong-Cheol Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.349-354
    • /
    • 2023
  • This study wa s conducted a s pa rt of ma ximizing the use of ca rbon dioxide by a pplying CCU(Ca rbon Ca pture, Utiliza tion) a mong technologies for reducing CO2 in the cement industry. In a carbon dioxide curing environment, changes in carbonation depth and changes in basic physical properties by age due to the mixing of carbonation reaction accelerators were usually targeted at Portland cement paste. In addition, in order to check the fixed amount of CO2 in the concrete field, a thermal analysis method was applied to evaluate CaCO3 decarbonization at high temperatures. As a result of the evaluation, it was confirmed that the carbonation depth in the cured body significantly increased due to the incorporation of CRA in the carbonation depth diffusion performance. In addition, it was confirmed that the weight reduction rate increased by 23.8 % and 40.77 %, respectively, compared to Plain, in the order of curing conditions for constant temperature and humidity and curing conditions for carbonation chambers, so it was confirmed that the amount of excellent CaCO3 produced by the addition of CRA increased as the concentration of CO2 increased.