• Title/Summary/Keyword: thermal microsensor

Search Result 11, Processing Time 0.02 seconds

Fabrication of low power micro-heater for micro-gas sensor II. Characteristics of micro-gas sensor

  • Chung, Wan-Young;Lee, Sang-Moon;Kang, Bong-Hwi;Jang, Dong-Kun;Lee, Duk-Dong;Yamazoe, Noboru
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.237-244
    • /
    • 1997
  • A new planar-type microsensor, which had a platinum heater and a sensing layer on the same plane was fabricated on silicon substrate with stress-relieved PSG(phosphosilicate glass)/$Si_{3}N_{4}$(800nm/150nm) diaphragm. The proposed planar-type microsensor could be fabricated by simple silicon process using only 3 masks for photolithography process compared with 5 or 6 masks of the typical micro-gas sensor. The thermal properties of the microsensor from thermal simulation were compared with those of the fabricated microheater. Although there are some discrepancy between the simulation result and the result from the fabricated microheater, the thermal simulation by FEM was proved to be an useful method to evaluate the thermal properties of microheater. The sensing characteristics of the fabricated microsensor with the planar-type heater were investigated also.

  • PDF

Development of SPM Dynamic Analysis Software (SPM의 동적해석 S/W 개발)

  • 이문성;김진석;조철희;홍성근;정광식
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.84-89
    • /
    • 2000
  • Thermal simulation of typical stack-type and newly proposed planar-type micro-gas sensors were studied by FEM method. The thermal analyses for the proposed planar structure including temperatur distribution over the sensing layer and power consumption of the heater were carried using finite element method by computer simulation and well compared with those of typical stack-type micro-gas sensor. The thermal properties of the microsensor from thermal simulation were compared with those of a actual device to investigate the acceptability of the computer simulation.

  • PDF

Analyses of Micromachinning Processes for Microaccelecrometer Sensors Based on Electrostatic Forces (정전기력을 이용한 마이크로가속도계 센서의 마이크로머시닝 공정해석)

  • 김옥삼
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.579-584
    • /
    • 2000
  • Single crystal silicon (SCS) is used in a variety of microsensor applications in which stresses and other mechanical effects may dominate device performance. The authers model temperature dependent mechnical properties during focused io beam(FIB) cutting and Pt deposition processes. In microaccelero-meter manufacturing process, this paper intend to find thermal displacement change of the temperature by tunnel gap, additional beam part and pt deposition. The thermal analysis intend to use ANSYS V5.5.3.

  • PDF

Thermal Analysis of Silicon Micro-Gas Sensor (실리콘 마이크로 가스센서의 열해석)

  • 정완영;엄구남
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.567-570
    • /
    • 2000
  • Thermal simulation of typical stack-type and newly proposed planar-type micro-gas sensors were studied by FEM method. the thermal analysis for the proposed planar structure including temperature distribution over the sensing layer and power consumption of the heater were carried using finite element method by computer simulation and well compared with those of typical stack-type micro-gas sensor. The thermal properties of the microsensor from thermal simulation were compared with those of an actual device to investigate the acceptability of the computer simulation.

  • PDF

Fabrication of Low Power Micro-heater for Micro-Gas Sensor I. The Thermal Distribution Analysis by The Finite Element Method (마이크로 가스센서를 위한 저전력 마이크로 히터의 제조 I. 유한요소법에 의한 열분포해석)

  • Chung, Wan-Young;Lim, Jun-Woo;Lee, Duk-Dong;Yamazoe, Noboru
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.337-345
    • /
    • 1997
  • The micro heater with PSG/$Si_{3}N_{4}$ diaphragm and platinum heater pattern was designed for micro-gas sensor fabrication. The platinum heater and the platinum electrode for sensing layer were designed on the same plane and fabricated in the single photolithography process. The thermal analyses including temperature distribution over the diaphragm and power consumption of the heater were carried by finite element method. The thermal properties of the microsensor with both heater and sensing electrode on the same plane was compared with that of the typical microsensor which had the structure of sensing layer/insulator/heater on the diaphragm.

  • PDF

Finite Element Analysis of Thermal Deformations for Microaccelerometer Sensors using SOI Wafers (SOI웨이퍼의 마이크로가속도계 센서에 대한 열변형 유한요소해석)

  • 김옥삼;구본권;김일수;김인권;박우철
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.12-18
    • /
    • 2002
  • Silicon on insulator(SOI) wafer is used in a variety of microsensor applications in which thermal deformations and other mechanical effects may dominate device Performance. One of major Problems associated with the manufacturing Processes of the microaccelerometer based on the tunneling current concept is thermal deformations and thermal stresses. This paper deals with finite element analysis(FEA) of residual thermal deformations causing popping up, which are induced in micrormaching processes of a microaccelerometer. The reason for this Popping up phenomenon in manufacturing processes of microaccelerometer may be the bending of the whole wafer or it may come from the way the underetching occurs. We want to seek after the real cause of this popping up phenomenon and diminish this by changing manufacturing processes of mic개accelerometer. In microaccelerometer manufacturing process, this paper intend to find thermal deformation change of the temperature distribution by tunnel gap and additional beams. The thermal behaviors analysis intend to use ANSYS V5.5.3.

Planar-Type Micro Gas Sensor (평면형 마이크로 가스센서)

  • 이상윤;정완영;이덕동
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.101-104
    • /
    • 1998
  • A new planar-type micro gas sensor was designed and fabricated on silicon substrate and the operating characteristics of the sensor were investigated. The thin sensitive film of the sensor was fabricated by spin-coating of the SnO$_2$ sol solution which was synthesized by hydrothermal method. The spin-coating method for preparation of sensing layer was adopted to improve the long-term stability of the fabricated sensing film instead of physical methods such as rf sputtering and thermal evaporation. The fabricated microsensor showed a fairly good sensing performance for CO gas in air at 250$^{\circ}C$ The sensitivity(S=Ra/Rg) was shown to be about 5 to 2000ppm CO with heating power of 50mW.

  • PDF

Fabrication of Pt Thin-film Type Microheater for Thermal Microsensors and Its Characteristics (열형 마이크로센서용 백금박막형 미세발열체의 제작과 그 특성)

  • 정귀상;홍석우
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.509-513
    • /
    • 2000
  • The physical and electrical characteristics of MgO and Pt thin-films on it deposited by reactive sputtering and rf magnetron sputtering respectively were analyzed with annealing temperature and time by four point probe SEM and XRD. Under annealing conditions of 100$0^{\circ}C$ and 2 hr, MgO thin-film had the properties of improving Pt adhesion to SiO$_2$and insulation without chemical reaction to Pt thin-film and the sheet resistivity and the resistivity of Pt thin-film deposited on it were 0.1288 Ω/ and 12.88 $\mu$$\Omega$.cm respectively. We made Pt resistance pattern on SiO$_2$/Si substrate by life-off method and fabricated Pt thin-film type microheater for thermal microsensors by Pt-wire Pt-paste and SOG(spin-on-glass). In the temperature range of 25~40$0^{\circ}C$ we estimated TCR(temperature coefficient of resistance) and resistance ratio of thin-film type Pt-RTD(resistance thermometer device). We obtained TCR value of 3927 ppm/$^{\circ}C$ close to the bulk Pt value. Resistance values were varied linearly within the range of the measurement temperature. The thermal characteristics of fabricated thin-films type Pt micorheater were analyzed with Pt-RTD integrated on the same substrate. The heating temperature of Pt microheater could be up to 40$0^{\circ}C$ with 1.5 watts of the heating power.

  • PDF

Fabrication and characterization of silicon-based microsensors for detecting offensive $CH_3SH\;and\; (CH_3)_3N$ gases

  • Lee, Kyu-Chung;Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.38-42
    • /
    • 2008
  • Highly sensitive and mechanically stable gas sensors have been fabricated using the microfabrication and micromachining techniques. The sensing materials used to detect the offensive $CH_3SH$ and $(CH_3)_3N$ gases are 1 wt% Pd-doped $SnO_2$ and 6 wt% $Al_2O_3$-doped ZnO, respectively. The optimum operating temperatures of the devices are $250^{\circ}C$ and $350^{\circ}C$ for $CH_3SH$ and $(CH_3)_3N$, respectively and the corresponding heater power is, respectively, about 55mW and 85mW. Excellent thermal insulation is achieved by the use of a double-layer membrane: i.e. $0.2{\mu}m$-thick silicon nitride and $1.4{\mu}m$-thick phosphosilicate glass. The sensors are mechanically stable enough to endure the heat cycles between room temperature and $350^{\circ}C$, at least for 30 days.

PDMS/Glass Serpentine Microchannel Chip for PCR with Bubble Suppression in Sample Injection (시료주입시 기포발생이 억제된 반응조 형태의 중합효소연쇄반응용 PDMS/유리 바이오칩)

  • Cho Chul-Ho;Cho Woong;Hwang Seung-Yong;Ahn Yoo-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1261-1268
    • /
    • 2006
  • This paper reports low-cost microreactor $(10{\mu}{\ell})$ biochip for the DNA PCR (polymerase chain reaction). The microbiochip $(20mm{\times}28mm)$ is a hybrid type which is composed of PDMS (polydimethylsiloxane) layer with serpentine micochannel $(360{\mu}m{\times}100{\mu}m)$ chamber and glass substrate integrated with microheater and thermal microsensor. Undesirable bubble is usually created during sample loading to PMDS-based microchip because of hydrophobic chip surface. Created bubbles interrupt stable biochemical reaction. We designed improved microreactor chamber using microfluidic simulation. The designed reactor has a coner-rounded serpentine channel architecture, which enables stable injection into hydrophobic surface using micropipette only. Reactor temperature needed to PCR reaction is controlled within ${\pm}0.5^{\circ}C$ by PID controller of LabVIEW software. It is experimentally confirmed that SRY gene PCR by the fabricated microreactor chip is performed for less than 54 min.