Browse > Article
http://dx.doi.org/10.3795/KSME-A.2006.30.10.1261

PDMS/Glass Serpentine Microchannel Chip for PCR with Bubble Suppression in Sample Injection  

Cho Chul-Ho (삼성전자 통신연구소 통신모듈 Lab.)
Cho Woong (한양대학교 대학원 기계공학과)
Hwang Seung-Yong (한양대학교 기계공학과)
Ahn Yoo-Min (한양대학교 분자생명과학부)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.30, no.10, 2006 , pp. 1261-1268 More about this Journal
Abstract
This paper reports low-cost microreactor $(10{\mu}{\ell})$ biochip for the DNA PCR (polymerase chain reaction). The microbiochip $(20mm{\times}28mm)$ is a hybrid type which is composed of PDMS (polydimethylsiloxane) layer with serpentine micochannel $(360{\mu}m{\times}100{\mu}m)$ chamber and glass substrate integrated with microheater and thermal microsensor. Undesirable bubble is usually created during sample loading to PMDS-based microchip because of hydrophobic chip surface. Created bubbles interrupt stable biochemical reaction. We designed improved microreactor chamber using microfluidic simulation. The designed reactor has a coner-rounded serpentine channel architecture, which enables stable injection into hydrophobic surface using micropipette only. Reactor temperature needed to PCR reaction is controlled within ${\pm}0.5^{\circ}C$ by PID controller of LabVIEW software. It is experimentally confirmed that SRY gene PCR by the fabricated microreactor chip is performed for less than 54 min.
Keywords
Polymerase Chain Reaction; Serpentine Microchannel Reactor; PDMS/Glass DNA Chip;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Hsu, J. T., Das, S. and Mohapatra, S., 1997, 'Polymerase Chain Reaction Engineering,' Biotechand Bioengineering, Vol. 55, No.2, pp. 359-366   DOI   ScienceOn
2 Cho, W., Ko, Y.-J., Ahn, Y., Yoon, J.-Y. and Cho, N.G, 2006, 'Surface Modification Effect of Wettability on the Performance of PDMS-Based Valve-less Micrompump,' Key Engineering Materials, Vols. 326-328, pp. 297-300   DOI
3 Zhao, Y. and Zhang, X., 2005, 'A Novel Pressure Indicator for Continuous Flow PCR Chip Using Micro Molded PDMS Pillar Arrays,' Mater. Res. Symp. Proc. Vol. 845, pp. AA5.10.1-AA5.10.6
4 Cheng, J., Shoffner, M. A., Hvichia, G E., Kricka, L. J. and Wilding, P., 1996, 'Chip PCR. II. Investigation of Difference PCR Amplification Systems in Microfabricated Silicon-Glass Chips,' Nucleic Acids Research, Vol. 24, pp. 380-385   DOI   ScienceOn
5 Lee, S.-W., Ahn, Y. and Chai, Y.-G, 2004, 'Microfilter Chip Fabrication for Bead-Based Immunoassay,' Trans. of the KSME (A), Vol. 28, No.9, pp. 1429-1434   과학기술학회마을   DOI
6 EI-Ali, J., Perch-Nielsen, I. R., Poulsen, C. R., Bang, D. D., P. and Wolff, T. A., 2004, 'Simulation and Experimental Validation of a SU-8 Based PCR Thermocycler Chip with Integrated Heaters and Temperature Sensor,' Sensors and Actuators (A), Vol. 110, pp. 3-10   DOI   ScienceOn
7 Yoon, D. S., Lee, Y.-S., Lee, Y., Cho, H. J., Sung, S. W., Oh, K. W., Cha, J. and Lim, G, 2002, 'Precise Temperature Control and Rapid Thermal Cycling in a Micromachined DNA Polymerase Chain Reaction Chip,' Journal of Micromechanics and microVol. 12, pp. 813-823   DOI   ScienceOn
8 Shin, Y. S., Cho, K., Lim, S. H., Chung, S., Park, S.J., Chung, C, Han, D.-C and Chang, J. K., 2003, 'PDMS-Based Micro PCR Chip with Parylene Coating,' Journal of Micromechanics and microVol. 13, pp. 768-774   DOI   ScienceOn
9 Choi, J.-Y., Ahn, Y. and Hwang, S.-Y., 2006, 'PDMS/Glass Based DNA Microbiochip for Restriction Enzyme Reaction and Electrophoresis Detection,' Trans. of the KSME (A), Vol. 30, No.1, pp. 26-31   과학기술학회마을   DOI
10 Hong, J. W., Fujii, T., Seki, M., Yamamoto, T. and Endo, I., 2001,'Integration of Gene Amplification and Capillary Gel Electrophoresis on a Polydimethylsiloxane-Glass Hybrid Microchip,' Electrophoresis, Vol. 22, pp. 328-333   DOI   ScienceOn
11 Madou, M. J., 2002, Fundamentals of Micro Fabrication, 2nd ed., CRC Press, Boca Raton, pp. 510-512
12 Northrup, M. A., Gonzlaez, C., Hadley, D., Hills, R. F., Landre, P., Lehew, S., Saiki, R., Sninsky, J. J., Watson, R. and Watson, R. Jr., 1995, 'A MEMS-based Miniature DNA Analysis System,' The 8th International Conference on Solid-State Sensors and Actuators and Eurosensors IX, Stockholm, Sweden, pp. 764-767   DOI
13 Daniel, J. H., Iqbal, S., Millington, R. B., Moore, D. F., Lowe, C R., Lesile, D. L., Lee, M. A. and Pearce, M. J., 1998, 'Silicon Microchambers for DNA Amplification,' Sensors and Actuators (A), Vol. 71, pp. 81-88   DOI   ScienceOn
14 Kricka, L. J. and Wilding, P., 2003, 'Microchip PCR,' Anal Bioanal Chem, Vol. 377, pp. 820-825   DOI
15 Kopp, M. U., de Mello, A. J. and Manz, A., 1998, 'Chemical Amplification: Continuous-Flow PCR in a Chip,' Science, Vol. 280, pp. 1046-1048   DOI   ScienceOn
16 Sun, K., Yamaguchi, A., Ishida, Y., Matsuo, S. and Misawa, H., 2002, 'A Heater-Integrated Transparent Microchannel Chip for Continuous-Flow PCR,' Sensors and Actuators (B), Vol. 84, pp. 283-289   DOI   ScienceOn
17 Fujii, T., 2002, 'PDMS-Based Microfluidic Devices for Biomedical Applications,' Microelectronic Engineering, Vol. 61-62, pp. 907-914   DOI   ScienceOn
18 Koh, C. G, Tan, w., Zhao, M.-Q., Ricco, A. J. and Fan, Z. H., 2003, 'Integrating Polymerase Chain Reaction, Valving, and Electrophoresis in a Plastic Device for Bacterial Detection,' Analytical Chemistry, Vol. 75, pp. 4591-4598   DOI   ScienceOn