Browse > Article
http://dx.doi.org/10.3795/KSME-A.2006.30.10.1261

PDMS/Glass Serpentine Microchannel Chip for PCR with Bubble Suppression in Sample Injection  

Cho Chul-Ho (삼성전자 통신연구소 통신모듈 Lab.)
Cho Woong (한양대학교 대학원 기계공학과)
Hwang Seung-Yong (한양대학교 기계공학과)
Ahn Yoo-Min (한양대학교 분자생명과학부)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.30, no.10, 2006 , pp. 1261-1268 More about this Journal
Abstract
This paper reports low-cost microreactor $(10{\mu}{\ell})$ biochip for the DNA PCR (polymerase chain reaction). The microbiochip $(20mm{\times}28mm)$ is a hybrid type which is composed of PDMS (polydimethylsiloxane) layer with serpentine micochannel $(360{\mu}m{\times}100{\mu}m)$ chamber and glass substrate integrated with microheater and thermal microsensor. Undesirable bubble is usually created during sample loading to PMDS-based microchip because of hydrophobic chip surface. Created bubbles interrupt stable biochemical reaction. We designed improved microreactor chamber using microfluidic simulation. The designed reactor has a coner-rounded serpentine channel architecture, which enables stable injection into hydrophobic surface using micropipette only. Reactor temperature needed to PCR reaction is controlled within ${\pm}0.5^{\circ}C$ by PID controller of LabVIEW software. It is experimentally confirmed that SRY gene PCR by the fabricated microreactor chip is performed for less than 54 min.
Keywords
Polymerase Chain Reaction; Serpentine Microchannel Reactor; PDMS/Glass DNA Chip;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Hsu, J. T., Das, S. and Mohapatra, S., 1997, 'Polymerase Chain Reaction Engineering,' Biotechand Bioengineering, Vol. 55, No.2, pp. 359-366   DOI   ScienceOn
2 Cho, W., Ko, Y.-J., Ahn, Y., Yoon, J.-Y. and Cho, N.G, 2006, 'Surface Modification Effect of Wettability on the Performance of PDMS-Based Valve-less Micrompump,' Key Engineering Materials, Vols. 326-328, pp. 297-300   DOI
3 Zhao, Y. and Zhang, X., 2005, 'A Novel Pressure Indicator for Continuous Flow PCR Chip Using Micro Molded PDMS Pillar Arrays,' Mater. Res. Symp. Proc. Vol. 845, pp. AA5.10.1-AA5.10.6
4 Cheng, J., Shoffner, M. A., Hvichia, G E., Kricka, L. J. and Wilding, P., 1996, 'Chip PCR. II. Investigation of Difference PCR Amplification Systems in Microfabricated Silicon-Glass Chips,' Nucleic Acids Research, Vol. 24, pp. 380-385   DOI   ScienceOn
5 Lee, S.-W., Ahn, Y. and Chai, Y.-G, 2004, 'Microfilter Chip Fabrication for Bead-Based Immunoassay,' Trans. of the KSME (A), Vol. 28, No.9, pp. 1429-1434   과학기술학회마을   DOI
6 EI-Ali, J., Perch-Nielsen, I. R., Poulsen, C. R., Bang, D. D., P. and Wolff, T. A., 2004, 'Simulation and Experimental Validation of a SU-8 Based PCR Thermocycler Chip with Integrated Heaters and Temperature Sensor,' Sensors and Actuators (A), Vol. 110, pp. 3-10   DOI   ScienceOn
7 Yoon, D. S., Lee, Y.-S., Lee, Y., Cho, H. J., Sung, S. W., Oh, K. W., Cha, J. and Lim, G, 2002, 'Precise Temperature Control and Rapid Thermal Cycling in a Micromachined DNA Polymerase Chain Reaction Chip,' Journal of Micromechanics and microVol. 12, pp. 813-823   DOI   ScienceOn
8 Shin, Y. S., Cho, K., Lim, S. H., Chung, S., Park, S.J., Chung, C, Han, D.-C and Chang, J. K., 2003, 'PDMS-Based Micro PCR Chip with Parylene Coating,' Journal of Micromechanics and microVol. 13, pp. 768-774   DOI   ScienceOn
9 Choi, J.-Y., Ahn, Y. and Hwang, S.-Y., 2006, 'PDMS/Glass Based DNA Microbiochip for Restriction Enzyme Reaction and Electrophoresis Detection,' Trans. of the KSME (A), Vol. 30, No.1, pp. 26-31   과학기술학회마을   DOI
10 Hong, J. W., Fujii, T., Seki, M., Yamamoto, T. and Endo, I., 2001,'Integration of Gene Amplification and Capillary Gel Electrophoresis on a Polydimethylsiloxane-Glass Hybrid Microchip,' Electrophoresis, Vol. 22, pp. 328-333   DOI   ScienceOn
11 Madou, M. J., 2002, Fundamentals of Micro Fabrication, 2nd ed., CRC Press, Boca Raton, pp. 510-512
12 Kopp, M. U., de Mello, A. J. and Manz, A., 1998, 'Chemical Amplification: Continuous-Flow PCR in a Chip,' Science, Vol. 280, pp. 1046-1048   DOI   ScienceOn
13 Koh, C. G, Tan, w., Zhao, M.-Q., Ricco, A. J. and Fan, Z. H., 2003, 'Integrating Polymerase Chain Reaction, Valving, and Electrophoresis in a Plastic Device for Bacterial Detection,' Analytical Chemistry, Vol. 75, pp. 4591-4598   DOI   ScienceOn
14 Fujii, T., 2002, 'PDMS-Based Microfluidic Devices for Biomedical Applications,' Microelectronic Engineering, Vol. 61-62, pp. 907-914   DOI   ScienceOn
15 Northrup, M. A., Gonzlaez, C., Hadley, D., Hills, R. F., Landre, P., Lehew, S., Saiki, R., Sninsky, J. J., Watson, R. and Watson, R. Jr., 1995, 'A MEMS-based Miniature DNA Analysis System,' The 8th International Conference on Solid-State Sensors and Actuators and Eurosensors IX, Stockholm, Sweden, pp. 764-767   DOI
16 Daniel, J. H., Iqbal, S., Millington, R. B., Moore, D. F., Lowe, C R., Lesile, D. L., Lee, M. A. and Pearce, M. J., 1998, 'Silicon Microchambers for DNA Amplification,' Sensors and Actuators (A), Vol. 71, pp. 81-88   DOI   ScienceOn
17 Kricka, L. J. and Wilding, P., 2003, 'Microchip PCR,' Anal Bioanal Chem, Vol. 377, pp. 820-825   DOI
18 Sun, K., Yamaguchi, A., Ishida, Y., Matsuo, S. and Misawa, H., 2002, 'A Heater-Integrated Transparent Microchannel Chip for Continuous-Flow PCR,' Sensors and Actuators (B), Vol. 84, pp. 283-289   DOI   ScienceOn