• Title/Summary/Keyword: thermal insulation property

Search Result 118, Processing Time 0.02 seconds

A Study on Wearing Satisfaction and Thermal Properties of Jumper for Korean Military Tank Drivers (전차병 점퍼의 착용만족도 및 보온성에 관한 연구)

  • Kwon, Seo-Yoon;Choi, Eun-Mi;Lim, Chae-Guen;Shin, Dong-Woo;Kim, Kyung-Pil;Kwon, Oh-Kyung;Jeong, Hyun-Mi
    • Fashion & Textile Research Journal
    • /
    • v.14 no.2
    • /
    • pp.261-268
    • /
    • 2012
  • The purpose of this study is to investigate problems of design, fitness, suitability for movement, and wearing comfort of jumper for Korean military tank drivers through analysis of actual wearing condition by questionnaire and field evaluation and to provide basic data for developing its improved design. The survey was done for 477 military tank drivers and evaluation was performed using thermal manikin to measure insulation. The overall satisfaction for design of jumper for military tank driver was over 3.5(likert scale). The overall satisfaction for fitness of jumper for military tank driver was also over 3.5. The satisfactions for material was between 2.39 and 3.13 and the satisfaction for pilling property was the lowest, followed by static property and shape stability after laundering. The satisfactions for movement suitability were standing(3.81), sitting(3,38), raising hand(forward: 2.90, sideward: 3.01), respectively. In insulation evaluation of jumper for military tank drivers and outwears(jacket, jumper), the insulation of jumper for military tank drivers was lower than outwear(jumper) and same with outwear(jacket). The insulation in dynamic and still condition(without wind) of jumper for military tank driver was 0.37clo and 0.31clo, respectively. Its decreation rate in dynamic condition comparing to still condition was 59% which was lower than jacket(0.73clo) and jumper(1.15clo).

Characterizations on the Thermal Insulation of SiC Coated Carbon-Carbon Composites (탄화규소로 코팅된 탄소-탄소 복합재료의 단열 특성)

  • Seo, Hyoung-IL;Lim, Byung-Joo;Sihn, Ihn Cheol;Bae, Soobin;Lee, Hyung-Ik;Choi, Kyoon;Lee, Kee Sung
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.101-107
    • /
    • 2020
  • This study investigates the characterization on the thermal insulation properties of silicon carbide coating on the Cf-C composites. The silicon carbide coatings by chemical vapor deposition on the C/C composites are prepared to evaluate thermal resistance. Firstly, we perform the basic insulation test by thermal shock at 1350℃ in air on the C/C composite and SiC-coated C/C composite. We also performed the burner tests on the surface of the composites at high temperatures such as 1700 and 2000℃, and the weight change after burner tests are measured. The damages on the surface of C/C composite and SiC-coated composite are observed. As a result, the SiC coating is beneficial to protect the C/C composite from high temperature even though damages such as defoliation, crack and voids are observed during burner test at 2000℃.

Comparative Study of DC Breakdown and Space Charge Characteristics of Insulation Paper Impregnated with Natural Ester and Mineral Oil

  • Hao, Jian;Zou, Run-Hao;Liao, Rui-Jin;Yang, Li-Jun;Liao, Qiang;Zhu, Meng-Zhao
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1682-1691
    • /
    • 2018
  • Natural ester is a suitable substitute for mineral oil and has been widely used in AC transformer in many countries. In order to further application of natural ester in direct current (DC) equipment, it is needed to investigate its long term insulation property under DC condition. In this paper, a thermal ageing experiment was conducted for both mineral oil-paper and natural ester-paper insulation. The DC breakdown and space charge characteristics of insulation paper impregnated with natural ester and mineral oil was compared. Results show that the resistivity of the paper immersed in natural ester and mineral oil both increase as the ageing goes on. While insulation paper impregnated with natural ester has higher resistivity and DC breakdown voltage than the paper impregnated with mineral oil. The DC breakdown voltage for the oil impregnated insulation paper being DC pre-stressing is higher than that without pre-stressing. The average DC breakdown field strength difference between the test with pre-stressing and without pre-stressing clearly shows that there is an apparent enhancement effect for the homo-charge injection on the DC breakdown.

Low Temperature Co-firing of Camber-free Ceramic-metal Based LED Array Package (세라믹-금속 기반 LED 어레이 패키지의 저온동시소성시 휨발생 억제 연구)

  • Heo, Yu Jin;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.35-41
    • /
    • 2016
  • Ceramic-metal based high power LED array package was developed via thick film LTCC technology using a glass-ceramic insulation layer and a silver conductor patterns directly printed on the aluminum heat sink substrate. The thermal resistance measurement using thermal transient tester revealed that ceramic-metal base LED package exhibited a superior heat dissipation property to compare with the previously known packaging method such as FR-4 based MCPCB. A prototype LED package sub-module with 50 watts power rating was fabricated using a ceramic-metal base chip-on-a board technology with minimized camber deformation during heat treatment by using partially covered glass-ceramic insulation layer design onto the aluminum heat spread substrate. This modified circuit design resulted in a camber-free packaging substrate and an enhanced heat transfer property compared with conventional MCPCB package. In addition, the partially covered design provided a material cost reduction compared with the fully covered one.

Thermal Property and Fire Resistance of Cellulose Insulation (섬유질 단열재의 열적 특성 및 내화성능)

  • Kwon, Young-Cheol;Seo, Seong Yeon;Kim, Sung Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.203-212
    • /
    • 2005
  • Cellulose insulation is primarily manufactured from recycled newsprint and treated with fire retardants for the fire resistance. Thanks to the fire retardants, it is not combustible and flammable. In addition to that, Its thermal resistance is much better than that of fiberglass or rock wool. It is made from waste paper and easily decayed when it is demolished, and it has small embodied energy. So it is very environment-friendly building material. For broader use of cellulose insulation in buildings in Korea, it is necessary to test its physical performance to compare the results with the requirements on the Korean Building Code. To this end, apparent thermal conductivity (ka) measurements of Korean-made loose-fill cellulose insulations were recently completed using equipment that was built and operated in accordance with ASTM C 518 and the fire resistance was tested in accordance with ASTM C 1485. Korean loose-fill cellulose has thermal conductivity about 5% greater than the corresponding U.S. product at the same density. This is likely due to differences in the recycled material being used. Both spray-applied and loose-fill cellulose insulation lose about 1.5% of their thermal resistivity for $5.5^{\circ}C$ increase in temperature. The fire resistance of cellulose insulation is increased in linear proportion to the increase of the rate of fire retardant. Thanks to the high fire resistance, cellulose insulation can be used as a substitution of Styrofoam or Urethane foam which is combustible. The thermal conductivity of cellulose insulation was $0.037-0.043W/m{\cdot}K$ at the mean specimen temperature from $4-43^{\circ}C$. It corresponds to the thermal resistance of "Na Grade" according to the Korean Building Code. The effect of chemical content on thermal conductivity was negligible for all but the chemical-free specimen which had the highest value for the thermal conductivity over the temperature range tested. The thermal resistance of cellulose insulation is better than that of fiberglass or rock wool, and its fire resistance is higher than that of Styrofoam or Urethane foam. Therefore it can be substituted for those above considering its physical performance. Cellulose insulation is no more expensive than Styrofoam or rock wool, so it is recommended to use it more widely in Korea.

Physical Properties of Mineral Hydrate Insulation Used Desulfurization Gypsum (탈황석고를 사용한 미네랄 하이드레이트 단열소재의 물리적 특성 연구)

  • Park, Jae-Wan;La, Yun-Ho;Chu, Yong-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.291-296
    • /
    • 2014
  • For the purpose of energy consumption and green-house gas reduction from building, new insulation materials with improved thermal property have been developed and used. Among new insulation materials, mineral hydrate which compensates for the defects of existing materials is using as a prominent insulation material. The fabrication method of mineral hydrate is similar to that of ALC for building structure but mineral hydrate is only used for insulation. The raw materials that make up of mineral hydrate are cement, lime and anhydrite. Especially anhydrite is all dependant on imports. In this study, Desulfurization Gypsum(DG), by-product of oil plant, was used for replacing for imported anhydrite and waste recycling. DG substituted all of anhydrite and a part of lime. Mineral hydrate used DG had analogous thermal and physical properties, compared to existing mineral hydrate.

Effect of External Thermal Insulation Composite System with a Non-combustible Calcium Silicate Based Mineral on The Mitigation for Reducing Fast Spread of Flame (불연성 무기 단열재를 화재확산 방지구조로 적용한 외단열 마감시스템의 화재성능)

  • Lee, Jong-Chan;Park, Jong-Chul;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.5
    • /
    • pp.397-403
    • /
    • 2016
  • As a building energy saving standard strengthened, The number of building installed external thermal insulation composite system(ETICS) using EPS insulation increased. But frequent fire accident in the buildings installed EIFS using EPS led to strengthening of building fire safety regulation. This study is for fire property of EPS ETICS reinforced with noncombustible calcium silicate-based mineral insulation as a fire spread prevention structure(FSPS). Fire test for large scale wall by ISO 13785-2 was applied and results showed EPS EIFS with FSPS got 3~8 times superior fire safety than normal EIFS by visual investigation. Temperature and heat flux measurement results, which data of upside of specimen were lower than downside, also supported fire safety of EIFS with FSPS.

A Experimental Study on the Property of Lightweight Aggregate Concrete Using Hollow Micro Sphere (유리질 중공 미소 구체를 사용한 경량골재콘크리트의 특성에 관한 실험적 연구)

  • Kim, Sang Heon;Kim, Se Hwan;Park, Young Shin;Jeon, Hyun Gyu;Seo, Chee Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.177-183
    • /
    • 2015
  • In this study, the thermal conductivity, physical and mechanical properties of lightweight aggregate concretes with hollow micro sphere(HMS) are experimentally examined as a basic research for the development of structural insulation concrete. As the results of this experiment, in the case of concrete mixed with HMS, the value of slump has been reduced, so it is found that the dosage of superplasticizer should be increased. As the replacement ratio of HMS increases, it has shown that the compressive strength is somewhat decreased due to the low interfacial adhesion strength of HMS. But the thermal conductivity is found to be greatly improved with the replacement ratio of HMS increases, the thermal conductivity of HMS shows the lower value of 68% at lightweight aggregate concrete and 32% of normal concrete. Also it is found that the compressive strength is decreased and thermal conductivity is increased as the water-cement ratio increases. The most outstanding for insulation performance is observed when using 20% of HMS and 50% of water-cement ratio.

A Study on Combustion Property of Cellulose Insulation according to Particle Size (입도에 따른 셀룰로오스 단열재의 연소특성에 관한 연구)

  • Choi, Jeong-hwa;Kim, Hong;Yoo, Kyong-Ok
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.62-67
    • /
    • 1996
  • The smouldering combustion of cellulose Insulation treated with boric acid - borax - aluminium sulfate as combustion retardants are examined by candle type combustibility tester. The flammability behavior of combustion process is LOI, Smouldering region, Smouldering, Flamming spread region and Flame spread region. In this experiment, Particle size of four examined LOI, L.Point, H.Point, at the biggest size show high LOI. The surface area is connected with thermal conduction. The phenomena of combustion transition are governed by quantity of combustible gas generation in heating zone of cellulose insulation.

  • PDF

Specific Heat Measurement of Insulating Material using Heat Diffusion Method

  • Choi, Yeon-Suk;Kim, Dong-Lak
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.2
    • /
    • pp.32-35
    • /
    • 2012
  • The objective of the present work is to develop a precise instrument for measuring the thermal property of insulating material over a temperature range from 30 K to near room temperature by utilizing a cryocooler. The instrument consists of two thermal links, a test sample, heat sink, heat source and vacuum vessel. The cold head of the cryocooler as a heat sink is thermally anchored to the thermal link and used to bring the apparatus to a desired temperature in a vacuum chamber. An electric heater as a heat source is placed in the middle of test sample for generating uniform heat flux. The entire apparatus is covered by thermal shields and wrapped in multi-layer insulation to minimize thermal radiation in a vacuum chamber. For a supplied heat flux the temperature distribution in the insulating material is measured in steady and transient state. The thermal conductivity of insulating material is measured from temperature difference for a given heat flux. In addition, the specific heat of insulating material is obtained by solving one-dimensional heat diffusion equation.