• Title/Summary/Keyword: thermal initiator

Search Result 108, Processing Time 0.022 seconds

A Development of Nontoxic Composite Latex Using $CaCO_3$/PEMA ($CaCO_3$/Poly ethyl methacrylate를 이용한 무독성 혼합라텍스의 개발)

  • Seul, Soo-Duk;Lee, Sun Ryong;Lee, Nae-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.133-139
    • /
    • 2002
  • Core-shell polymers of inorganic/organic pair, which are consisted of both core and shell component, were synthesized by sequential emulsion polymerization using ethyl methacrylate (EMA) as a shell monomer and ammonium persulfate as initiator. We found that $CaCO_3$ core should be prepared by adding 2.0wt% SDBS(sodium dodecyl benzene sulfonate), $CaCO_3$ core/PEMA shell polymerization was carried out on the surface of $CaCO_3$ particle during EMA shell polymerization in the core-shell polymer preparation. The structure of core-shell polymer were investigated by measuring the degree on decomposition of $CaCO_3$ by HCI solution, thermal decomposition of polymer composite on thermogravimetric analyzer, glass transition temperature on differential scanning calorimeter, and morphology using scanning electron microscope.

Synthesis and Cationic Polymerization of Vinyl Ethers Containing Oxynitrobenzylidenemalononitrile and Oxynitrobenzylidenecyanoacetate as the NLO-phores in the Side Chain

  • 이주연;김무용;안미라
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.567-572
    • /
    • 1999
  • 5-Nitro-2-(2'-vinyloxyethoxy)benzylidenemalononitrile (2a), methyl 5-nitro-2-(2'-vinyloxyethoxy)benzylidenecyanoacetate (2b), 3-nitro-4-(2'-vinyloxyethoxy)benzylidenemalononitrile (4a), methyl 3-nitro-4-(2'-vinyloxyethoxy)benzylidenecyanoacetate (4b), 2-nitro-5-(2'-vinyloxyethoxy)benzylidenemalononitrile (6a), and methyl 2-nitro-5-(2'-vinyloxyetboxy)benzylidenecyanoacetate (6b) were prepared by the condensation of 5-nitro-2-(2'-vinyloxyethoxy)benzaldehyde (1), 3-nitro-4-(2'-vinyloxyethoxy)benzaldehyde (3), and 2-nitro-5-(2'-vinyloxyethoxy)benzaldehyde (5) with malononitrile or methyl cyanoacetate, respectively. Vinyl ether monomers 2a-b, 4a-b, and 6a-b were polymerized with boron trifluoride etherate as a cationic initiator to yield poly(vinyl ethers) 7-9 having oxynitrobenzylidenemalononitrile and oxynitrobenzylidenecyanoacetate, which is effective chromophore for second-order nonlinear optical applications. Polymers 7-9 were soluble in common organic solvents such as acetone and DMSO. Tg values of the resulting polymers were in the range of 67-83 ℃. Electrooptic coefficient (r33) of the poled polymer films were in the range of 15-27 pm/V at 633 nm. Polymers 7-9 showed a thermal stability up to 300 ℃ in TGA thermograms, which is acceptable for NLO device applications.

Systematic studies on the properties of poly(lactic acid) (PLA)/liquid polybutadiene rubber (LPB) reactive blends

  • Lim, Sung-Wook;Choi, Myeon-Cheon;Jeong, Jae-Hoon;Park, Eun-Young;Ha, Chang-Sik
    • Advances in materials Research
    • /
    • v.7 no.2
    • /
    • pp.149-162
    • /
    • 2018
  • Following our previous work, we have conducted further systematic studies to investigate the effects of reactive blending on the thermal and mechanical properties of blends of poly(lactic acid) (PLA) and a liquid rubber, polybutadiene (LPB). The toughened PLAs were prepared by melt-blending the PLA with various contents (0-9 wt.%) of the LPB in the absence or presence of dicumyl peroxide (DCP), a radical initiator. It was found that the rubber domains were homogeneously dispersed at the nanoscale in the PLA matrix up to 9 wt.% of LPB thanks to the reactive blending in the presence of DCP. Owing to the compatibilization of PLA with LPB through reactive blending, the elongation and toughness of PLA was enhanced, while the hydrolytic degradation of PLA was reduced.

Synthesis and Cationic Polymerization of Multifunctional Vinyl Ethers Containing Dipolar Electronic Systems

  • 이주연;김지향;김민정
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.307-313
    • /
    • 1999
  • 2,4-Di-(2'-vinyloxyethoxy)benzylidenemalononitrile (la), methyl 2,4-di-(2'-vinyloxyethoxy)benzylidenecyanoacetate (lb), 3,4-di-(2'-vinyloxyethoxy)benzylidene malononitrile (2a), methyl 3,4-di-(2'-vinyloxyethoxy)benzylidenecyanoacetate (2b), 2,5-di-(2'-vinyloxyethoxy)benzylidenemalononitrile (3a), methyl 2,5-di-(2'-vinyloxyethoxy)benzylidenecyanoacetate (3b), 2,3-di-(2'-vinyloxyethoxy)benzylidenemalononitrile (4a), and methyl 2,3-di-(2'-vinyloxyethoxy)benzylidenecyanoacetate (4b) were prepared by the condensation of 2,4-di-(2'-vinyloxyethoxy)benzaldehyde, 3,4-di-(2'-vinyloxyethoxy)benzaldehyde, 2,5-di-(2'-vinyloxyethoxy) benzaldehyde, and 2,3-di-(2'-vinyloxyethoxy)benzaldehyde with malononitrile or methyl cyanoacetate, respectively. Trifunctional divinyl ether monomers 1-4 were polymerized readily with boron trifluoride etherate as a cationic initiator to give optically transparent swelling poly(vinyl ethers) 5-8 havina oxybenzylidenemalononitrile and oxycyanocinnamate, which is presumably effective chromophore for second-order nonlinear optical applications. Polymers 5-8 were not soluble in common organic solvents such as acetone and DMSO due to crosslinking. Polymers 5-8 showed a thermal stability up to 300 ℃ in TGA thermograms, which is acceptable for electrooptic device applications.

Nanostructure formation in thin films of block copolymers prepared by controlled radical polymerization

  • Voit, B.;Fleischmann, S.;Messerschmidt, M.;Leuteritz, A.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.99-100
    • /
    • 2006
  • Orthogonally protected block copolymers of based on p-hydroxystyrene were prepared with high control via nitroxy mediated radical polymerization using an alkoxyamine as an unimolecular initiator. Thin films of partially protected block copolymer were prepared by spin or dip coating. A well defined nanostructure could be observed as a result of phase separation e.g. cylinders in a matrix oriented perpendicular or parallel to the substrate. The nanostructure of the polymeric films can be defined by the block copolymer composition and it determines surface properties and allows further, selective functionalization, e.g. via click chemistry. The thin films can be designed in a way to allow a patterning based on a thermal or photochemical stimulus.

  • PDF

Synthesis and Characterization of Poly(L-lactide)(L-PLA), Poly(D-lactide)(D-PLA) and Stereocomplex-poly(lactide)(PLA) (L-폴리락타이드, D-폴리락타이드의 활성과 입체복합체 폴리락타이드의 제조 및 특성연구)

  • Kim, Ji-Hyun;JeGal, Jong-Geon;Song, Bong-Keun;Shin, Chae-Ho
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.52-59
    • /
    • 2011
  • L-PLA or D-PLA was synthesized in bulk at $140^{\circ}C$ by ring opening polymerization(ROP) of L-lactide or D-lactide as a monomer using tin(II) octoate and lauryl alcohol as a catalyst and an initiator with changing the amounts of catalyst(0.25~1.0 wt%) and initiator(0.l~0.5 wt%). And stereocomplex-PLA was prepared by L-PLA/D-PLA having a wide range of molecular weight(30000~90000 g/mol) and L-PLA/D-PLA blends having different mixing ratio ($X_D$). The melting temperature. thermal degradation temperature and thermal stability of stereocomplex-PLA were higher than those of homopolymers(L-PLA, D-PLA). We supposed that these improvements arose from a strong interaction between L-PLA and D-PLA. The improved mechanical properties and changes in morphology of LPLA/D-PLA blends were compared to those of homopolymers(L-PLA, D-PLA).

Growth Mechanism and Crystal Ordering of Spherulitic Patterns in a Belousov-Zhabotinsky Type Reaction System

  • Yadav, Narendra;Majhi, S.S.;Srivastava, P.K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3397-3406
    • /
    • 2012
  • Three types of spherulitic morphologies have been investigated in dual substrate mode of Belousov-Zhabotinsky (BZ) type reaction system. Prior to growth of spherulites, three distinct patterning behaviors have been observed sequentially during the reaction process. Initial and the early-phase of reaction showed the emergence of concentric ring-like wave patterns. A colloidal-state of reaction consists of numerous fine solid particles, which forms primarily some nucleation centers of dendritic characters. The nucleation centers were found to grow in sizes and shapes with the progress of reaction. It leads to growth of dendritic-like spherulitic crystal patterns. The resultant spherulites showed transitions in their morphologies, including sea-weeds and rhythmic spherulitic crystal patterns, by the effects substituted organic substrate and in the higher concentration of bromate-initiator respectively. The branching mechanism and crystal ordering of spherulitic textures were studied with help of optical microscope (OPM) and scanning electron microscope (SEM). Characteristics of crystal phases were also evaluated using X-ray diffraction (XRD) and differential thermal analysis (DTA). Results indicated that the compositions of reactants and crystal orderings were interrelated with morphological transitions of spherulites as illustrated and described.

Synthesis of a novel non-conjugated Blue emitting material Copolymer and Fabrication of mono color OLED by doping various Fluorescent Dyes

  • Cho Jae Young;Oh Hwan Sool;Yoon Seok Beom;Kang Myung Koo
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.675-679
    • /
    • 2004
  • The existing conjugated blue emitting material polymer which has been used for the two-wavelength method white-emission has good stability and low operating voltage as merits, but the imbalanced carrier transport has been indicated as problem area. We have introduced a novel blue emitting material having perylene moiety unit with hole transporting ability and blue emitting property and triazine moiety unit with electron transporting ability into the same host chain. We have synthesized N-[p-(perylen-3-y1)pheny1]methacry1 amide (PPMA) monomer and [N-(2,4-dipheny1-1,3,5-triazine)pheny1 methacry1 amide] (DTPM) monomer having blue light-emitting unit and electron transport unit, respectively by three steps. A novel non-conjugated blue emitting material Poly[N -[p­(perylene-3-y1) pheny1] methacry1 amide-co-N-[P-(4,6-dipheny1-1,3,5-triazine-2-y1]pheny1]methacry1 amide] (PPPMA-co-DTPM) copolymer having electron transporting unit was synthesized by the solution polymerization of PPMA and DTPM monomers with an AIBN initiator and showed high yield of $75{\%}$. It was very soluble in common organic solvents, and the fabrication of the thin film using a spin coating method was very simple. The PPPMA exhibited a good thermal stability.

  • PDF

Polymerization and Preparation of Functional Ophthalmic Material Containing Carbon Nanoparticles

  • Lee, Min-Jae;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.28 no.8
    • /
    • pp.452-458
    • /
    • 2018
  • This research is conducted to create a functional hydrogel ophthalmic lens containing nanoparticles. Carbon nanoparticles and PEGMEMA are used as additives for the basic combination of HEMA, MA, and MMA, and the materials are copolymerized with EGDMA as the cross-linking agent and AIBN as the thermal initiator. The hydrogel lens is produced using a cast-mold method, and the materials are thermally polymerized at $100^{\circ}C$ for an hour. The polymerized lens sample is hydrated in a 0.9 % saline solution for 24 hours before the optical and physical characteristics of the lens are measured. The refractive index, water content, contact angle, light transmittance, and tensile strength are measured to evaluate the physical and optical characteristics of the hydrogel lens. The refractive index, water content, contact angle, UV-B light transmittance, UV-A light transmittance, visible light transmittance, tensile strength and breaking strength of the hydrogel lens polymer are 1.4019~1.4281, 43.05~51.18 %, $31.95{\sim}68.61^{\circ}$, 21.69~58.11 %, 35.59~84.26 %, 45.85~88.06 %, 0.1075~0.1649 kgf and 0.1520~0.2250 kgf, respectively. The results demonstrate an increase in refractive index, tensile strength and breaking strength and a decrease in contact angle and light transmittance. Furthermore, the visible light transmissibility is significantly increased at PEG 10 %. It is clear that this material can be used for high-performance ophthalmic lenses with wettability, ultraviolet ray blocking effect, and tensile strength.

Retention Mechanism of Caffeine and Tryptophan in Macroporous Poly[Methacrylic Acid-co-Ethylene Glycol Dimenthacrylate] Rods (매크로 다공성 Poly[Methacrylic Acid-co-Ethylene Glycol Dimenthacrylate] 막대에서 Caffeine과 Tryptophan의 체류 메카니즘)

  • Jin, Longmei;Yan, Hongyuan;Zheng, Jinzhu;Row, Kyung-Ho
    • KSBB Journal
    • /
    • v.21 no.5
    • /
    • pp.401-404
    • /
    • 2006
  • Macroporous Poly(Methacrylic acid-co-Ethylene Glycol Dimethacrylate) Rods were in situ thermal initialized within a empty column($3.9{\times}150mm$) by free radical polymerization. The polymerization mixture was consisted of monomer, cross-linking monomer, porogenic solvent, initiator and control the ratio of these materials, column efficiency could be developed. Caffeine and tryptophan as separation substances and the retention mechanism of this kind of monolithic column was mainly hydrogen bond function.