• Title/Summary/Keyword: thermal image processing

Search Result 138, Processing Time 0.033 seconds

Accurate Detection of a Defective Area by Adopting a Divide and Conquer Strategy in Infrared Thermal Imaging Measurement

  • Jiangfei, Wang;Lihua, Yuan;Zhengguang, Zhu;Mingyuan, Yuan
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1644-1649
    • /
    • 2018
  • Aiming at infrared thermal images with different buried depth defects, we study a variety of image segmentation algorithms based on the threshold to develop global search ability and the ability to find the defect area accurately. Firstly, the iterative thresholding method, the maximum entropy method, the minimum error method, the Ostu method and the minimum skewness method are applied to image segmentation of the same infrared thermal image. The study shows that the maximum entropy method and the minimum error method have strong global search capability and can simultaneously extract defects at different depths. However none of these five methods can accurately calculate the defect area at different depths. In order to solve this problem, we put forward a strategy of "divide and conquer". The infrared thermal image is divided into several local thermal maps, with each map containing only one defect, and the defect area is calculated after local image processing of the different buried defects one by one. The results show that, under the "divide and conquer" strategy, the iterative threshold method and the Ostu method have the advantage of high precision and can accurately extract the area of different defects at different depths, with an error of less than 5%.

A Study on Application of Remote Sensing for Thermal Plume Analysis (온배수 확산분석을 위한 Remote Sensing 활용에 관한 연구)

  • Yeu, Bock-Mo;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.2 s.2
    • /
    • pp.185-194
    • /
    • 1993
  • In this research, the image obtained by TM platformed in the LANDSAT-5 and the terrestrial infrared image obtained by the Thermo Tracer were employed in order to search the distribution of industrial thermal plume discharged into seas. Sea surface temperature distributions were deduced based on the infrared band 6 in the TM image of the LANDSAT by employing the transformal formula provided by the CSFC of the NASA and post-calibration values. The temperature distributions were also obtained with the processing mode of the TH1100 series from the terrestrial thermal image or the Thermo tracer. According to the results of the image analyses with this methods, it was found that sea surface temperatures in shallow coastal area largely affected by the temperatures of the freshwater and inland and that the range and the area of distribution of the thermal plume can be visualized quantitatively. Furthermore, when the terrestrial thermal infrared scanner is used, the more details of the distribution range can be obtained, and the image results are comparable to those obtained from the LNADSTA.

  • PDF

Preliminary Study on Image Processing Method for Concrete Temperature Monitoring using Thermal Imaging Camera (열화상카메라 기반 콘크리트 온도 측정을 위한 이미지 프로세싱 적용 기초 연구)

  • Mun, Seong-Hwan;Kim, Tae-Hoon;Cho, Kyu-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.206-207
    • /
    • 2020
  • Accurate estimation of concrete strength development at early ages is a critical factor to secure structural stability as well as to speed up the construction process. The temperature generated from the heat of hydration is considered as a key parameter in predicting the early age strength. Conventionally, concrete temperature has been measured by temperature sensors installed inside concrete. However, considering the measurement on building structures with multiple floors, this method requires reinstallation and repositioning of hardware such as sensors, data loggers and routers for data transfer. This makes the temperature monitoring work cumbersome and inefficient. Concrete temperature monitoring by using thermal remote sensing can be an effective alternative to supplement those shortcomings. In this study, image processing was carried out through K-means clustering technique, which is a unsupervised learning method, and the classification results were analyzed accordingly. In the future, research will be conducted on how to automatically recognize concrete among various objects by using deep learning techniques.

  • PDF

Detection and Quantification of Defects in Composite Material by Using Thermal Wave Method

  • Ranjit, Shrestha;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.6
    • /
    • pp.398-406
    • /
    • 2015
  • This paper explored the results of experimental investigation on carbon fiber reinforced polymer (CFRP) composite sample with thermal wave technique. The thermal wave technique combines the advantages of both conventional thermal wave measurement and thermography using a commercial Infrared camera. The sample comprises the artificial inclusions of foreign material to simulate defects of different shape and size at different depths. Lock-in thermography is employed for the detection of defects. The temperature field of the front surface of sample was observed and analysed at several excitation frequencies ranging from 0.562 Hz down to 0.032 Hz. Four-point methodology was applied to extract the amplitude and phase of thermal wave's harmonic component. The phase images are analyzed to find qualitative and quantitative information about the defects.

The Flame Image Observation for Monitoring Management of Pulverized Coals Firings and its Feasibility Test to Boilers for Thermal Power Plant (미분탄 연소의 감시 관리를 위한 화염영상 감시 및 발전용 보일러 적용시험)

  • Baek, Woon-Bo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.92-98
    • /
    • 2008
  • The flame image observation and analysis has been investigated for combustion monitoring and management of the pulverized coal firing for thermal power plant, especially for lower nitrogen oxide generation and safer operation. We aimed at obtaining the relationship between burner flame image information and emissions of nitrogen oxide and unburned carbon in furnace utilizing the flame image processing methods, by which we quantitatively determine the conditions of combustion on the individual homers. Its feasibility test was undertaken with Samchonpo thermal power plant #4 unit which has 24 burners, through which the system was observed to be effective for evaluating the combustion conditions and continuous monitoring to prevent future loss of ignition.

Implementation of a Thermal Imaging System with Focal Plane Array Typed Sensor (초점면 배열 방식의 열상카메라 시스템의 구현)

  • 박세화;원동혁;오세중;윤대섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.5
    • /
    • pp.396-403
    • /
    • 2000
  • A thermal imaging system is implemented for the measurement and the analysis of the thermal distribution of the target objects. The main part of the system is a thermal camera in which a focal plane array typed sensor is introduced. The sensor detects the mid-range infrared spectrum of target objects and then it outputs a generic video signal which should be processed to form a frame thermal image. Here, a digital signal processor(DSP) is applied for the high speed processing of the sensor signals. The DSP controls analog-to-digital converter, performs correction algorithms and outputs the frame thermal data to frame buffers. With the frame buffers can be generated a NTSC signal and transferred the frame data to personal computer(PC) for the analysis and a monitoring of the thermal scenes. By performing the signal processing functions in the DSP the overall system achieves a simple configuration. Several experimental results indicate the performance of the overall system.

  • PDF

TEC-less Thermal Image Processing Method for Small Arms (소형 화기용 TEC-less 열상 처리 기법)

  • Kwak, Dongmin;Yoon, Joohong;Yang, Dongwon;Lee, Yonghun;Seo, Yongseok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.162-169
    • /
    • 2019
  • This paper describes a thermal image processing algorithm for uncooled type TEC-less IR detector which is applicable to fire control system of small arms. We implemented a real-time gain and offset compensation algorithm based on polynomial approximation from the raw dataset which is acquired by two reference temperature of blackbody from various FPA(Focal Plane Array) temperature. Through the experiment, we analyzed the output characteristics of detector's raw-data and compared IR image quality to traditional non-uniformity correction method. It shows that the proposed method works well in all FPA temperature range with low residual non-uniformity.

Analysis of Water Stress of Greenhouse Crops Using Infrared Thermography (열영상 정보를 이용한 온실 재배 작물의 수분 스트레스 분석)

  • 김기영;류관희;채희연
    • Journal of Biosystems Engineering
    • /
    • v.24 no.5
    • /
    • pp.439-444
    • /
    • 1999
  • Automated greenhouse production systems often require crop growth monitoring involving accurate quantification of plant physiological properties. Conventional methods are usually burdensome, inaccurate, and harmful to crops. A thermal image analysis system can accomplish rapid and accurate measurements of physiological-property changes of stressed crops. In this research a thermal imaging system was used to measure the leaf-temperature changes of several crops according to water deficit. Thermal images were obtained from lettuce, cucumber, pepper, and chinese cabbage plants. Results showed that there were significant differences in the temperature of stressed plants and non-stressed plants. The temperature differences between these two group of plants were 0.7 to 3$^{\circ}C$ according to species.

  • PDF

A Study on the Design of IoT-based Thermal Sensor and Video Sensor Integrated Surveillance Equipment (IoT 기반 열상 센서와 영상 센서 일체형 감시 장비 설계에 관한 연구)

  • Lee, Yun-Min;Shin, Jin-Seob
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.9-13
    • /
    • 2019
  • In this paper, IoT based thermal sensor data and image sensor integrated environmental monitoring system for ship, and it is the monitoring system which can process and transmit the Full HD IP camera image and thermal data transmitted from the thermal module for processing and transmitting, and the viewer S/W is to be developed which provides in real time the information for actual surrounding temperature together with the image, and enables fire prediction which was impossible in the case of the existing equipment by estimating the temperature change as the thermal image is added to the image camera, and saves and analyzes all data while receiving the temperature data and image signal transmitted from the integrated thermal sensor environmental monitoring equipment for ship and displaying them as 2D on the monitoring system.