• Title/Summary/Keyword: thermal factor

Search Result 1,559, Processing Time 0.036 seconds

Probabilistic Estimation of Thermal Fatigue Performance of Three-Way Catalyst Substrate (삼원 촉매 담체의 확률론적 열피로 성능 평가)

  • Cho, Seok-Swoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.669-676
    • /
    • 2014
  • A three-way catalyst substrate for domestic passenger car satisfies the design criteria for exhaust gas exchange and pressure drop but does not have satisfactory thermal fatigue performance. Prefracture faults in this three-way catalyst substrate has often been discovered in vehicle repair or vehicle inspection facilities. This paper presents a thermal fatigue performance estimation method for a three-way catalyst substrate using a probabilistic strength reduction factor model. This method is superior to the thermal fatigue performance estimation method for a three-way catalyst substrate that uses a deterministic strength model.

Study on the Structural and Thermal Properties of Modified Elastic Epoxy with Brittleness (취성 개량형 탄성에폭시의 구조 및 열적특성에 관한 연구)

  • Lee, K.Y.;Lee, K.W.;Min, J.Y.;Choi, Y.S.;Park, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.128-130
    • /
    • 2003
  • As toughness-investigation to improve brittleness of existing epoxy resin, elastic-factor of elastic epoxy using TMA (Thermomechanical Analysis), DMTA (Dynamic Mechanical Thermal Analysis) and FESEM (Field Emission Scanning Electron Microsope) for structure-images analysis were investigated. A range of measurement temperature of the TMA, DMTA was changed from -20[$^{\circ}C$] to 200[$^{\circ}C$]. When modifier was ratio of 0[phr], 20[phr], 35[phr], glass transition temperature (Tg) of elastic epoxy was measured through thermal analysis devices. Also, it was investigated thermal expansion coefficient ($\alpha$), modulus and loss factor through DMTA. In addition, it was analyzed structure through FSSEM and made sure elastic-factor of elastic epoxy visually. As thermal analysis results, 20[phr] was superior than 30[phr] thermally and mechanically. Specially, thermal expansion coefficient, modulus, damping properties were excellent. By structure-images analysis through FESEM, we found elastic-factor of elastic epoxy that is not existing epoxy, and proved high impact.

  • PDF

Study on the Thermal Properties and High Impact of Elastic Epoxy Blend System (탄성에폭시 블렌드 시스템의 열적 특성 및 내충격성에 관한 연구)

  • 이경용;이관우;민지영;최용성;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.4
    • /
    • pp.192-199
    • /
    • 2004
  • Elastic-factor of elastic epoxy were investigated by TMA (Thermomechanical Analysis), DMTA (Dynamic Mechanical Thermal Analysis), TGA (Thermogravimetric Analysis) and FESEM (Field Emission Scanning Electron Microscope) for structure-images analysis as toughness-investigation to improve brittleness of existing epoxy resin. A range of measurement temperature of the TMA and DMTA was changed from -20($^{\circ}C$) to $200^{\circ}(C)$, and TGA was changed from $0^{\circ}(C)$ to $600^{\circ}(C)$. Glass transition temperature (Tg) of elastic epoxy was measured through thermal analysis devices with the content of 0(phr), 20(phr) and 35(phr). Also, thermal expansion coefficient (a), high temperature, modulus and loss factor were investigated through TMA, TGA, and DMTA. In addition, the structure of specimens was analyzed through FESEM, and then elastic-factor of elastic epoxy was visually showed by FESEM. As thermal analysis results, 20(phr) was more excellent than 30(phr) thermally and mechanically. Specially, thermal expansion coefficient, high temperature, modulus, and damping properties were excellent. By structure-images analysis through FESEM, we found elastic-factor of elastic epoxy that is not existing epoxy, and proved high impact.

Comparison of Resonance Characteristics in FBAR Devices by Thermal Treatments

  • Mai Linh;Song Hae-il;Yoon Giwan
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.3
    • /
    • pp.137-141
    • /
    • 2005
  • The paper presents some methods to improve characteristics of film bulk acoustic resonator (FBAR) devices. The FBAR devices were fabricated on Bragg reflectors. Thermal treatments were done by sintering and/or annealing processes. The measurement showed a considerable improvement of return loss $(S_{11})$ and quality factor $(Q_{s/p}).$ These thermal treatment techniques seem very promising for enhancing FBAR resonance performance.

Thermal Crack Creation Process in an Automotive Brake Disk (자동차 브레이크 디스크의 열 균열 생성)

  • Ahn, S.;Lee, B.;Cho, C.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.143-147
    • /
    • 2000
  • This describes thermal crack creation process in automotive disks. Thermal cracks have been serious defects which induced disastrous accidents during traveling. The thermal cracks must be regularly eye-inspected. The cracks have been experimentally analysed; but they were not reported by analytic means yet. This paper proposed thermal crack creation process by a computer simulation which enlightened how to investigate thermal crack by cheap means. We explained the disk thermal crack creation and calculated stress intensity factor of an assumed surface crack in an automotive disk.

  • PDF

Analysis of Control Error Factors of a Thermal Output Experiment for Radiant Heating Panels (복사난방패널 방열량실험의 제어오차요인 분석)

  • Shin, Dae-Uk
    • Land and Housing Review
    • /
    • v.9 no.4
    • /
    • pp.33-42
    • /
    • 2018
  • As a radiant heating panel gets more popularity, the need to study on evaluation method of thermal output of the panel also becomes increasing. Generally, the chamber using method is applied to evaluate the thermal output through an experiment. However, the chamber using method cannot be used due to the limitations on space and cost. EN1264 addresses the test equipment to evaluate the thermal output by using simpler experimental setup, and introduces application method in detail. However, there is not enough description of control methods to meet the experiment condition, and it is difficult to meet this when practical experiment. Therefore, this paper analysed the control error factors of when the thermal output experiment is performed. When EN1264 method is applied to evaluate the thermal output of the radiant floor heating panel, the error factor which is caused by the characteristic of test equipment cannot be removed by the control methods of chamber using method. In addition, the error factor can be occurred at the element which is located out of the control system. These possible error factors are defined as the characteristic error factors.

Thermal stress intensity factor solutions for reactor pressure vessel nozzles

  • Jeong, Si-Hwa;Chung, Kyung-Seok;Ma, Wan-Jun;Yang, Jun-Seog;Choi, Jae-Boong;Kim, Moon Ki
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2188-2197
    • /
    • 2022
  • To ensure the safety margin of a reactor pressure vessel (RPV) under normal operating conditions, it is regulated through the pressure-temperature (P-T) limit curve. The stress intensity factor (SIF) obtained by the internal pressure and thermal load should be obtained through crack analysis of the nozzle corner crack in advance to generate the P-T limit curve for the nozzle. In the ASME code Section XI, Appendix G, the SIF via the internal pressure for the nozzle corner crack is expressed as a function of the cooling or heating rate, and the wall thickness, however, the SIF via the thermal load is presented as a polynomial format based on the stress linearization analysis results. Inevitably, the SIF can only be obtained through finite element (FE) analysis. In this paper, simple prediction equations of the SIF via the thermal load under, cool-down and heat-up conditions are presented. For the Korean standard nuclear power plant, three geometric variables were set and 72 cases of RPV models were made, and then the heat transfer analysis and thermal stress analysis were performed sequentially. Based on the FE results, simple engineering solutions predicting the value of thermal SIF under cool-down and heat-up conditions are suggested.

Study on Diagnosis for Transformers by Tan $\delta$ and Moisture of Insulation Oil According to Thermal Aging (절연유의 열열화에 따른 Tan $\delta$와 수분의 변화에 의한 변압기의 예방진단 연구)

  • HwangBo, Seung;Han, Min-Koo;Kwak, Hee-Ro;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.241-245
    • /
    • 1988
  • This paper reports the experiments regarding to diagnosis techniques for power transformers by measuring dissipation factor and moisture contents of mineral oils. Thermal aging environments of mineral oils were varied by the specially designed systems. Thermal aging of elevated temperature of $90^{\circ}C$ was performed for about 240 and 460 hours, respectively. Dissipation factor, permittivity, and water content were measured. Our test samples were not exposed to air. Dissipation factor increased while permittivity did not change. The level of dissipation factor determining the insulating quality of mineral oil was compared with the previous results of resistivity and several correction factor.

  • PDF

Strain Analysis for Quality Factor oft he Layered Mg0.93Ca0.07TiO3-(Ca0.3Li0.14Sm0.42)TiO3 Ceramics at Microwave Frequencies

  • Cho, Joon-Yeob;Yoon, Ki-Hyun;Kim, Eung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.222-225
    • /
    • 2002
  • Microwave dielectric properties of the layered and functionally graded materials (FGMs) of $Mg_{0.93}Ca_{0.07}TiO_3$ (MCT) and $(Ca_{0.3}Li_{0.14}Sm_{0.42})TiO_3$(CLST) were investigated as a function of the volume ratio of two components. Dielectric constant was decreased with an increase of the volume ratio of MCT which had a lower dielectric constant thant CLST. For the layered FGMs specimens, the difference of thermal expansion coefficients between two components induced thermal strain to dielectric layers, which was confirmed by the plot of ${\Delta}$k (X-ray diffraction peak width0 versus k (scattering vector) using the double-peak Lorentzian function, f(x). Quality factor of the specimens was affected by the thermal strain of dielectric layer, especially MCT layer. For the specimen with the volume ratio of MCT/CLST = 2, the qulaity factor of the specimen showed a minimum value due to the maximum thermal strain fo MCT layer.

Analysis on the View Factor of Data Storage and Handling Units's Radiators (자료처리/저장장치 방열판의 View Factor 분석)

  • Hwang, Inyoung;Shin, Somin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.678-685
    • /
    • 2017
  • The radiator of the data storage and handling units onboard the earth observation satellite is a groove-type radiator covered with a shield because of the periodic high heat dissipation and design characteristics of arrangement and mountability of the unit. The effect of the groove-type radiator and that of the shield versus plane radiator were verified through the thermal vacuum test. Through the test result, the temperatures of the radiator and the heat exchange due to the view factor were analyzed by using the analytical method. Conclusively the thermal performance of the shield dissipation plate was verified.