• Title/Summary/Keyword: thermal distribution

Search Result 3,035, Processing Time 0.03 seconds

Thermal Characteristics of the High Frequency Motor Spindle according to the Bearing Preloads and Cooling Conditions (예압과 냉각조건에 따른 고주파 모터 내장형 주축계의 열특성)

  • Choi D. B.;Kim S. T.;Jung S. H.;Kim J. H.;Kim Y. K.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.138-143
    • /
    • 2005
  • The important problem in the high speed spindles is to reduce and minimize the thermal effect by the motor and ball bearings. Thermal characteristics according to the bearing preload and hollow shaft cooling are studied for the spindle with the oil mist lubrication and high frequency motor. Temperature distribution and thermal deformation according to the spindle speed, preload and flow rate are measured by thermocouple and gap sensor. Temperature distribution and thermal deformation are analyzed by using the finite element method. The results of analysis are compared with the measured data. This paper show that the suitable preload and hollow shaft cooling are very effective to minimize the thermal effect by the motor and ball bearings. This study indicates that temperature distribution and thermal deformation of the high speed spindle system can be estimated reasonably by using the three dimensional model through the finite element method and supports thermal optimization and more effective cooling method.

  • PDF

Thermal post-buckling behavior of imperfect graphene platelets reinforced metal foams plates resting on nonlinear elastic foundations

  • Yin-Ping Li;Gui-Lin She;Lei-Lei Gan;H.B. Liu
    • Earthquakes and Structures
    • /
    • v.26 no.4
    • /
    • pp.251-259
    • /
    • 2024
  • In this paper, the thermal post-buckling behavior of graphene platelets reinforced metal foams (GPLRMFs) plate with initial geometric imperfections on nonlinear elastic foundations are studied. First, the governing equation is derived based on the first-order shear deformation theory (FSDT) of plate. To obtain a single equation that only contains deflection, the Galerkin principle is employed to solve the governing equation. Subsequently, a comparative analysis was conducted with existing literature, thereby verifying the correctness and reliability of this paper. Finally, considering three GPLs distribution types (GPL-A, GPL-B, and GPL-C) of plates, the effects of initial geometric imperfections, foam distribution types, foam coefficients, GPLs weight fraction, temperature changes, and elastic foundation stiffness on the thermal post-buckling characteristics of the plates were investigated. The results show that the GPL-A distribution pattern exhibits the best buckling resistance. And with the foam coefficient (GPLs weight fraction, elastic foundation stiffness) increases, the deflection change of the plate under thermal load becomes smaller. On the contrary, when the initial geometric imperfection (temperature change) increases, the thermal buckling deflection increases. According to the current research situation, the results of this article can play an important role in the thermal stability analysis of GPLRMFs plates.

Estimation of Temperature Distribution on Wafer Surface in Rapid Thermal Processing Systems (고속 열처리공정 시스템에서의 웨이퍼 상의 온도분포 추정)

  • Yi, Seok-Joo;Sim, Young-Tae;Koh, Taek-Beom;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.481-488
    • /
    • 1999
  • A thermal model based on the chamber geometry of the industry-standard AST SHS200MA rapid thermal processing system has been developed for the study of thermal uniformity and process repeatability thermal model combines radiation energy transfer directly from the tungsten-halogen lamps and the steady-state thermal conducting equations. Because of the difficulties of solving partial differential equation, calculation of wafer temperature was performed by using finite-difference approximation. The proposed thermal model was verified via titanium silicidation experiments. As a result, we can conclude that the thermal model show good estimation of wafer surface temperature distribution.

  • PDF

Modeling of Thermal Characteristics for IGBT (IGBT을 위한 열 특성 모델링)

  • Ryu, Se-Hwan;Hwang, Kwang-Chul;Yu, Young-Han;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.147-148
    • /
    • 2005
  • As the power density and switching frequency increase, thermal analysis of power electronics system becomes imperative. The analysis provides valuable information on the semiconductor rating, long-term reliability and efficient heat-sink design. In this paper, thermal distribution of the Insulated Gate Bipolar Transistor Module has been studied with different conditions and heat sink materials. For analysis of thermal distribution, we obtained results by using finite element simulator, Ansys.

  • PDF

Thermal post-buckling of graphene platelet reinforced metal foams doubly curved shells with geometric imperfection

  • Jia-Qin Xu;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.87 no.1
    • /
    • pp.85-94
    • /
    • 2023
  • In the present work, thermal buckling and post-buckling behaviors of imperfect graphene platelet reinforced metal foams (GPRMFs) doubly curved shells are examined. Material properties of GPRMFs doubly curved shells are presumed to be the function of the thickness. Reddy' shell theory incorporating geometric nonlinearity is utilized to derive the governing equations. Various types of the graphene platelets (GPLs) distribution patterns and doubly curved shell types are taken into account. The nonlinear equations are discretized for the case of simply supported boundary conditions. The thermal post-buckling response are presented to analyze the effects of GPLs distribution patterns, initial geometric imperfection, GPLs weight fraction, porosity coefficient, porosity distribution forms, doubly curved shell types. The results show that these factors have significant effects on the thermal post-buckling problems.

The Effect of Tandem Cooling on Welding Thermal Stress (Tandem Cooling이 용접열응력(熔接熱應力)에 미치는 영향(影響))

  • J.E.,Park;B.Y.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.14 no.4
    • /
    • pp.15-22
    • /
    • 1977
  • In this paper, two dimensional theoretical solutions of temperature distribution and thermal stress due to tandem cooling in an infinite plate were studied. Temperature distribution and thermal stress were calculated by numerical integration. Calculated temperature distributions were in good agreement with the result of the experiments by Park, and calculated thermal stresses were in good agreement with physical phenomena. This solutions could be applied to the practical tandem cooling operations.

  • PDF

Modeling of Thermal Conductivity of Carbon Spun Yarn (탄소 방적사의 열전도도 모델링)

  • Cho Young Jun;Sul In Hwan;Kang Tae Jin;Park Jong Kyoo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.186-189
    • /
    • 2004
  • A thermal model of carbon spun yam is presented. The unit cell of spun carbon yam is divided into a number of volume elements and the local material properties have been given to each element. By using Finite Difference Method (FDM), temperature distribution in the unit cell can be obtained. Effective thermal conductivity of the spun carbon yam unit cell is calculated using the temperature distribution and thermal conductivities of local elements.

  • PDF

The Frictional Characteristic and Distribution of Temperature in The Continuous Braking Effort on The Train Control (열차 제어의 연속 제동시 마찰특성과 온도분포)

  • Lee Si-Woo;Choi Kyung-Jin
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.101-106
    • /
    • 2005
  • During braking at a train, thermal energy is generated due to the frictions between disk and lining and wheel and shoe. In general, the braking transfers the kinetic energy into thermal energy. Therefore. the frictional characteristics are varied according to the braking force, the thermal resistance, and the thermostable, etc. Using a Dynamo testing we have studied the frictional characteristics and the thermal distribution to investigate a stable speed and to improve the testing method through comparing and analysing in the measurement or the thermocouple temperature and infrared camera.

  • PDF

Simulation Research on the Thermal Effects in Dipolar Illuminated Lithography

  • Yao, Changcheng;Gong, Yan
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.251-256
    • /
    • 2016
  • The prediction of thermal effects in lithography projection objective plays a significant role in the real-time dynamic compensation of thermal aberrations. For the illuminated lithography projection objective, this paper applies finite element analysis to get the temperature distribution, surface deformation and stress data. To improve the efficiency, a temperature distribution function model is proposed to use for the simulation of thermal aberrations with the help of optical analysis software CODE V. SigFit is approved integrated optomechanical analysis software with the feature of calculating OPD effects due to temperature change, and it is utilized to prove the validation of the temperature distribution function. Results show that the impact of surface deformation and stress is negligible compared with the refractive index change; astigmatisms and 4-foil aberrations dominate in the thermal aberration, about 1.7 λ and 0.45 λ. The system takes about one hour to reach thermal equilibrium and the contrast of the imaging of dense lines get worse as time goes on.

Effects of Thermal Contact Resistance on Film Growth Rate in a Horizontal MOCVD Reactor

  • Im Ik-Tae;Choi Nag Jung;Sugiyama Masakazu;Nakano Yoshiyaki;Shimogaki Yukihiro;Kim Byoung Ho;Kim Kwang-Sun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1338-1346
    • /
    • 2005
  • Effects of thermal contact resistance between heater and susceptor, susceptor and graphite board in a MOCVD reactor on temperature distribution and film growth rate were analyzed. One-dimensional thermal resistance model considering thermal contact resistance and heat transfer area was made up at first to find the temperature drop at the surface of graphite board. This one-dimensional model predicted the temperature drop of 18K at the board surface. Temperature distribution of a reactor wall from the three-dimensional computational fluid dynamics analysis including the gap at the wafer position showed the temperature drop of 20K. Film growth rates of InP and GaAs were predicted using computational fluid dynamics technique with chemical reaction model. Temperature distribution from the three-dimensional heat transfer calculation was used as a thermal boundary condition to the film growth rate simulations. Temperature drop due to the thermal contact resistance affected to the GaAs film growth a little but not to the InP film growth.