• 제목/요약/키워드: thermal decomposition temperature

Search Result 627, Processing Time 0.027 seconds

Nanoconfinement effects of MCM-41 on the thermal decomposition of metal borohydrides

  • Kim, Sanghoon;Song, Hyejin;Kim, Chul
    • Analytical Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • We used differential scanning calorimetry and a thermogravimetric analysis to investigate the effect of being confined in mesoporous MCM-41 on the decomposition of lithium borohydride and magnesium borohydride when heated. The confinement did not cause a phase transition of the metal borohydrides inside MCM-41, but did lower their decomposition temperature. With the exception of a lowering of the temperature, the decomposition reaction mechanism of the metal borohydrides was nearly the same for both the bulk and confined samples.

Thermal Shock Resistance and Thermal Expansion Behavior of $Al_2TiO_5$ Ceramics

  • Kim, Ik-Jin
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.179-193
    • /
    • 2000
  • Aluminium titanate (Al₂TiO5) with an excellent thermal shock resistant and a low the expansion coefficient was obtained by solid solution with MgO, SiO₂, and ZrO₂ in the Al₂TiO5 lattice or in the grain boundary solution through electrofusion in an arc furnace. However, these materials have low mechanical strength due to the presence of microcracks developed by a large difference in thermal expansion coefficients along crystallographic axes. Pure Al₂TiO5 tends to decompose into α-Al₂O₃ and TiO₂-rutile in the temperature range of 750-1300℃ that rendered it apparently useless for industrial applications. Several thermal shock tests were performed: Long therm thermal annealing test at 1100℃ for 100h; and water quenching from 950 to room temperature (RT). Cyclic thermal expansion coefficients up to 1500℃ before and after decomposition tests was also measured using a dilatometer, changes in the microstructure, thermal expansion coefficients, Young's modulus and strengths were determined. The role of microcracks in relation to thermal shock resistance and thermal expansion coefficient is discussed.

  • PDF

Thermal and Fluid Analyses of Inner Air at Decomposition Equipment on the Waste Gas of Perfluorinated Compounds (과불화 화합물 폐가스에 대한 분해 장치에서의 내부 공기의 열유동해석)

  • You, Jeong-Bong;Kim, Young-Chun;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1375-1380
    • /
    • 2015
  • Nowadays, the technique to deal with the waste gas of perfluorinated compounds using plasma has been developed. As the effective decomposition techniques at many research centers and companies were investigated at home and abroad, the products have been improved with various methods. This study aims to guess the distributions of pressure and temperature through the thermal and fluid analyses inside the decomposition equipment model of waste gas. As the analysis result, the maximum pressure and the minimum pressure are 0.975Pa and -1.037Pa individually on the whole. It is shown that the pressure of air decreases gradually as the air flows from inlet to plane 1 and the pressure increases as the air flows from plane 1 to outlet. And the maximum temperature and the mimum temperature are $1718^{\circ}C$$26.07^{\circ}C$ individually on the whole. It is shown that the temperature of air increases gradually as the air flows from inlet to plane 4 and the temperature decreases as the air flows until outlet. It is thought that the data necessary to develop the real system can be applied by using the thermal and fluid analyses.

Characteristic of Thermal Decomposition and Ignition Temperature of Magnesium Particles (마그네슘 분진의 열분해 및 발화온도 특성)

  • Han, Ou-Sup;Lee, Jung-Suk
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.69-74
    • /
    • 2013
  • The study was conducted experimentally on characteristic of thermal decomposition and minimum ignition temperature of magnesium dusts. For this purpose, three different Mg dusts of mean diameter (38, 142, $567{\mu}m$) were used. Experimental investigations were conducted by using TGA(Thermo gravimetric analysis) and MIT(Minimum Ignition Temperature) apparatus made in accordance with IEC 61241-2-1 standard. As the results, temperature of weight gain in Mg dust layers increased with increasing of heating rates in air and, under the same heating rate condition, minimum ignition temperature increased with particle size. Also the MIT of suspended Mg dust clouds tended to increase with increasing of mean diameter.

1-D Modeling of Heater Surface Temperature Distribution in EHC-based Urea-SCR System (EHC 기반 Urea-SCR 시스템 히터 표면온도 분포의 1-D 모델링)

  • Park, Sunhong;Son, Jihyun;Moon, Seoksu;Oh, Kwangchul;Jang, Sungwook;Park, Sungsuh
    • Journal of ILASS-Korea
    • /
    • v.27 no.1
    • /
    • pp.11-17
    • /
    • 2022
  • In upcoming Post Stage-V and Tier 5 regulations of construction machineries, nitrogen oxide (NOx) emissions are strictly limited in cold start conditions. In response to this, a method of improving NOx conversion efficiency has been applied by installing an electric heating catalyst (EHC) in front of conventional urea-SCR systems so that the evaporation and thermal decomposition of urea-water solution can be promoted in cold start conditions. In this strategy, the evaporation and thermal decomposition of urea-water solution and corresponding NOx conversion efficiency are governed by temperature conditions inside the EHC. Therefore, characterizing the temperature distribution in the EHC under various operating conditions is crucial for the optimized operation and control of the EHC in Urea-SCR systems. In this study, a 1-D modeling analysis was performed to predict the heater surface temperature distribution in EHC under various operating conditions. The reliability of prediction results was verified by comparing them with measurement results obtained using an infrared (IR) camera. Based on 1-D analysis results, the effects of various EHC operation parameters on the heater surface temperature distribution were analyzed and discussed.

Development of reduced-order thermal stratification model for upper plenum of a lead-bismuth fast reactor based on CFD

  • Tao Yang;Pengcheng Zhao;Yanan Zhao;Tao Yu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2835-2843
    • /
    • 2023
  • After an emergency shutdown of a lead-bismuth fast reactor, thermal stratification occurs in the upper Plenum, which negatively impacts the integrity of the reactor structure and the residual heat removal capacity of natural circulation flow. The research on thermal stratification of reactors has mainly been conducted using an experimental method, a system program, and computational fluid dynamics (CFD). However, the equipment required for the experimental method is expensive, accuracy of the system program is unpredictable, and resources and time required for the CFD approach are extensive. To overcome the defects of thermal stratification analysis, a high-precision full-order thermal stratification model based on CFD technology is prepared in this study. Furthermore, a reduced-order model has been developed by combining proper orthogonal decomposition (POD) with Galerkin projection. A comparative analysis of thermal stratification with the proposed full-order model reveals that the reduced-order thermal stratification model can well simulate the temperature distribution in the upper plenum and rapidly elucidate the thermal stratification interface characteristics during the lead-bismuth fast reactor accident. Overall, this study provides an analytical tool for determining the thermal stratification mechanism and reducing thermal stratification.

Thermal Behavior of Dickite (딕카이트의 열적 특성 연구)

  • 조현구
    • Journal of the Mineralogical Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.11-22
    • /
    • 1999
  • Thermal behavior of dickite was studied by thermal analysis, X-ray diffraction analysis, electron microprobe analysis, and scanning electron microscopy, Dickite has an endothermic peak at about$ 650^{\circ}C$ and an exothermic one at $960^{\circ}C$ in the differential thermal analysis. The endothermic reaction is assigned to the decomposition of dickite to meta-dickite. Hydroxyl radicals are removed from dickite structure by the reaction, resulting in the weight loss about 10.5~14.5% and appearance of a 14$\AA$ phase different from other kaolin minerals. The reaction slowly proceed in the range of $200^{\circ}C$. As the completion of decomposition, aciclular mullite forms at the expense of meta-dickite plates with random crystallographic relationship. Mullites have diverse silica versus alumina ratio. The exothermic reaction without weight loss seems to be due to the formation of spinel and amorphous silica. The spinel phase shows cryptocrystalline globular morphology accompanying a little amount of silica. From spinel phase shows cryptocrystalling globular morphology accompanying a little amount of silica. From this work, it is suggested that mullite is formed from meta-dickite much lower temperature than the reported one in the previous works.

  • PDF

Thermal Analysis of LaNi5 Hydride by Volumetric Method (부피법 자동장치를 이용한 LaNi5 수소화합물의 열분석 장치개발)

  • HAN, JEONG-SEB;KIM, SUNJUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.25-31
    • /
    • 2018
  • To apply Sievert's type apparatus to thermal analysis of hydrogen absorption materials, the dehydrogenation of $LaNi_5$ system was investigated. As the initial wt% of hydrogen was increased from 0.44 to 1.24 wt%, the peak temperature of evolution rate shifted to higher temperature. However, with the initial wt% of hydrogen higher than 0.95 wt%, the peak temperature of evolution rate did not change. As the heating rate was increased, the peak temperature increased; the peak temperatures for heating rates 0.5, 1.0 and 1.5 K/min were 262.2, 264.1, and 265.9 K respectively. The Sievert's type automatic apparatus can be successively applied to the thermal analysis of $LaNi_5$ hydride.

The study about the property of flame retardant of Red Phosphorus (홍인의 방염성에 관한연구)

  • Han, Yeon-Sun;Gu, Gang
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.04a
    • /
    • pp.31-33
    • /
    • 2008
  • The study related that Red Phosphorus is surface coated by Al(OH)$_3$ using the proportion 1:1, 1:3, 1:5 respectively, and then take the coated red phosphorus as the core material, at the same time, use Melamine-Formaldehyde resin as the capsule materials for microcapsule processing. According to the TG analysis, the coated red phosphorus with the proportion 1:3 has the tiptop temperature of thermal decomposition, it reaches 376.20^{\circ}C$$. The same to the ratio of burning incomplete carbon it reaches 26.5%. The lowest moisture absorption ratio of the red phosphorus that used coated red phosphorus for microcapsule processing can reach 0.5% with the condition that thermal decomposition temperature decline 3.6%.

  • PDF

A Study on Noxious Gases Analysis of Polyurethane foams (Polyurethane foam의 유해가스 분석에 관한 연구)

  • 이창우;김정환;현성호
    • Fire Science and Engineering
    • /
    • v.14 no.2
    • /
    • pp.7-13
    • /
    • 2000
  • We had investigated thermal stability, Ignition temperature and fire gas for polyurethane foams used for manikin, cushion and interior finishing material. Decomposition of polyurethane foams with temperature was investigated using a DSC and the weight loss with temperature increase using a TGA in order to find the thermal hazard of polyurethane foams, and the ignition temperature of polyurethane foams according to species. We studied constant temperature among ignition temperature measuring methods. In addition, noxious gases for polyurethane foams according to combustion condition were analyzed using gas analyzer and GASTEC. As results, initial decomposition temperature of polyurethane foam used for interior finishing material was lower than those for manikin and cushion, and exothermic energy was higher. Ignition temperature of polyurethane foam of interior finishing material was $420^{\circ}$. All of combustion forms at $427^{\circ}$ and under were smoldering combustion, and it was combustion at $500^{\circ}$. As furnace temperature was increased, concentration of noxious gases such as carbon oxide, carbon dioxide, and hydrogen cyanide was increased. And nitrogen oxide at combustion condition($500^{\circ}$) was over 10 ppm.

  • PDF