DOI QR코드

DOI QR Code

Characteristic of Thermal Decomposition and Ignition Temperature of Magnesium Particles

마그네슘 분진의 열분해 및 발화온도 특성

  • Han, Ou-Sup (Occupational Safety & Health Research Institute, KOSHA) ;
  • Lee, Jung-Suk (Occupational Safety & Health Research Institute, KOSHA)
  • 한우섭 (한국산업안전보건공단 산업안전보건연구원) ;
  • 이정석 (한국산업안전보건공단 산업안전보건연구원)
  • Received : 2013.09.24
  • Accepted : 2013.10.17
  • Published : 2013.10.31

Abstract

The study was conducted experimentally on characteristic of thermal decomposition and minimum ignition temperature of magnesium dusts. For this purpose, three different Mg dusts of mean diameter (38, 142, $567{\mu}m$) were used. Experimental investigations were conducted by using TGA(Thermo gravimetric analysis) and MIT(Minimum Ignition Temperature) apparatus made in accordance with IEC 61241-2-1 standard. As the results, temperature of weight gain in Mg dust layers increased with increasing of heating rates in air and, under the same heating rate condition, minimum ignition temperature increased with particle size. Also the MIT of suspended Mg dust clouds tended to increase with increasing of mean diameter.

본 연구에서는 Mg분진의 분진입경과 승온속도에 따른 열분해 및 발화온도 특성을 실험적으로 조사하였다. 이를 위해 시료는 평균 입경이 서로 다른 38, 142, $567{\mu}m$의 Mg분진을 사용하였다. 실험에서는 열중량분석장치(TGA)와 IEC 61241-2-1규격에 따라 제작한 자연발화온도(MIT) 실험장치를 사용하여 실시하였다. 실험 결과 퇴적 Mg에 있어서 공기중 승온속도가 증가하면 중량개시온도는 증가하였으며, 동일한 승온속도 조건에서 입경의 증가는 발화온도의 증가로 나타났다. 또한 부유 Mg분진의 최저발화온도(MIT)는 평균 입경이 증가할수록 증가하는 경향을 보였다.

Keywords

References

  1. G. Li, C.M. Yuan, Y. Fu, Y.P. Zhong, B.Z. Chen, Inerting of Magnesium Dust Cloud with Ar, $N_2$ and $CO_2$, Journal of Hazardous Materials, 170, 180-183, (2009). https://doi.org/10.1016/j.jhazmat.2009.04.121
  2. F.K. Sweis, The effect of admixed material on the ignition temperature of dust layers in hot environments, J. Hazard. Mater, 25-35, (1998).
  3. Enckhoff, R. K., Dust Explosions in the process industries (3rd ed.), Amsterdam: Gulf Professional Publishing (2003).
  4. Han, O.S., Study on Ignition Hazards of Suspended Metal Fine Particles, Occupational Safety & Health Research Institute, KOSHA, 2012-OSHIRI-920, 5-19, (2012).
  5. Han, O.S., Lee, K.W., Properties of Explosion and Flame Velocity with Content Ratio in Mg-Al Alloy Particles, KIGAS, 16(4), 32-37, (2012). https://doi.org/10.7842/kigas.2012.16.4.32
  6. Han, O.S., Lee, S.H., Effect of Mean Diameter on the Explosion Characteristic of Magnesium Dusts, KIGAS, 17(4), 33-38, (2013). https://doi.org/10.7842/kigas.2013.17.4.33
  7. Dreizin, E. L., Berman, C. H., & Vicenzi, E. P., Condensed-phase Modifications in Magnesium Particle Combustion in Air, Combustion and Flame, 122(1-2), 30-42, (2000). https://doi.org/10.1016/S0010-2180(00)00101-2
  8. IEC 61241-2-1, Methods for Determining the Minimum Ignition Temperatures of Dust (1994).