DOI QR코드

DOI QR Code

Nanoconfinement effects of MCM-41 on the thermal decomposition of metal borohydrides

  • Kim, Sanghoon (Department of Chemistry, Hannam University) ;
  • Song, Hyejin (Department of Chemistry, Hannam University) ;
  • Kim, Chul (Department of Chemistry, Hannam University)
  • Received : 2017.10.26
  • Accepted : 2017.12.26
  • Published : 2018.02.25

Abstract

We used differential scanning calorimetry and a thermogravimetric analysis to investigate the effect of being confined in mesoporous MCM-41 on the decomposition of lithium borohydride and magnesium borohydride when heated. The confinement did not cause a phase transition of the metal borohydrides inside MCM-41, but did lower their decomposition temperature. With the exception of a lowering of the temperature, the decomposition reaction mechanism of the metal borohydrides was nearly the same for both the bulk and confined samples.

Keywords

References

  1. H. S. Lee, S. J. Hwang, M. To, Y. S. Lee, and Y. W. Cho, J. Phys. Chem. C, 119(17), 9025-9035 (2015). https://doi.org/10.1021/acs.jpcc.5b00111
  2. G. L. Soloveichik, Y. Gao, J. Rijssenbeek, M. Andrus, S. Kniajanski, R. C. Bowman, S. J. Hwan, and J. C. Zhao, Int. J. Hydrog. Energy, 34(2), 916-928(2009). https://doi.org/10.1016/j.ijhydene.2008.11.016
  3. O. Zavorotynska, A. El-Kharbachi, S. Deledda, and B. C. Hauback, Int. J. Hydrog. Energy, 41(32), 14387-14403 (2016). https://doi.org/10.1016/j.ijhydene.2016.02.015
  4. C. Bonatto Minella, E. Pellicer, E. Rossinyol, F. Karimi, C. Pistidda, S. Garroni, C. Milanese, P. Nolis, M. D. Baró, O. Gutfleisch, K. P. Pranzas, A. Schreyer, T. Klassen, R. Bormann, and M. Dornheim, The J. Phys. Chem. C, 117(9), 4394-4403 (2013). https://doi.org/10.1021/jp3116275
  5. J. Vajo John, L. Skeith Sky, and F. Mertens, The J. Phys. Chem. B, 109(9), 3719-22 (2005). https://doi.org/10.1021/jp040769o
  6. K. Chlopek, C. Frommen, A. Leon, O. Zabara, and M. Fichtner, J. Mater. Chem., 17(33), 3496-3503 (2007). https://doi.org/10.1039/b702723k
  7. H. W. Li, Y. Yan, E. Akiba, and S. I. Orimo, Mater. Trans., 55(8), 1134-1137 (2014). https://doi.org/10.2320/matertrans.MG201407
  8. Y. J. Choi, J. Lu, H. Y. Sohn, Z. Z. Fang, C. Kim, R. C. Bowman, and S. J. Hwang, J. Phys. Chem. C, 115(13), 6048-6056 (2011). https://doi.org/10.1021/jp109113f
  9. R. Gosalawit-Utke, C. Milanese, P. Javadian, A. Girella, D. Laipple, J. Puszkiel, A. S. Cattaneo, C. Ferrara, J. Wittayakhun, J. Skibsted, T. R. Jensen, A. Marini, T. Klassen, and M. Dornheim, J. Alloys and Comp., 599, 78-86 (2014).
  10. T. K. Nielsen, U. Bosenberg, R. Gosalawit, M. Dornheim, Y. Cerenius, F. Besenbacher, and T. R. Jensen, ACS Nano, 4(7), 3903-3908 (2010). https://doi.org/10.1021/nn1006946
  11. A. F. Gross, J. J. Vajo, S. L. Van Atta, and G. L. Olson, The J. Phys. Chem. C, 112(14), 5651-5657 (2008). https://doi.org/10.1021/jp711066t
  12. T. K. Nielsen, F. Besenbacher, and T. R. Jensen, Nanoscale, 3(5), 2086-2098 (2011). https://doi.org/10.1039/c0nr00725k
  13. A. Gutowska, L. Li, Y. Shin, C. M. Wang, X. S. Li, J. C. Linehan, R. S. Smith, B. D. Kay, B. Schmid, W. Shaw, M. Gutowski, and T. Autrey, Angewandte Chemie - Inter. Edition, 44(23), 3578-3582 (2005). https://doi.org/10.1002/anie.200462602
  14. S. J. Hwang, H. S. Lee, M. To, Y. S. Lee, Y. W. Cho, H. Choi, and C. Kim, J. Alloys and Comp., 645(S1), S316- S319 (2015).
  15. S. Das, P. Ngene, P. Norby, T. Vegge, P. E. De Jongh, and D. Blanchard, J. Electroch. Soc., 163(9), A2029- A2034 (2016). https://doi.org/10.1149/2.0771609jes
  16. D. Blanchard, A. Nale, D. Sveinbjörnsson, T. M. Eggenhuisen, M. H. W. Verkuijlen, Suwarno, T. Vegge, A. P. M. Kentgens, and P. E. De Jongh, Adv. Funct. Mate., 25(2), 184-192 (2015). https://doi.org/10.1002/adfm.201402538
  17. Z. Z. Fang, P. Wang, T. E. Rufford, X. D. Kang, G. Q. Lu, and H. M. Cheng, Acta Mater., 56(20), 6257-6263 (2008). https://doi.org/10.1016/j.actamat.2008.08.033
  18. E. P. Barrett, L. G. Joyner, and P. P. Halenda, J. Am. Chem. Soc., 73(1), 373-380 (1951).
  19. Z. A. ALOthman, Materials, 5, 2874-2902 (2012).
  20. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, and T. Siemieniewska, Pure and Applied Chem., 57, 603-619 (1985).
  21. S. Cahen, J. B. Eymery, R. Janot, and J. M. Tarascon, J. Power Sour., 189(2), 902-908(2009). https://doi.org/10.1016/j.jpowsour.2009.01.002
  22. A. Züttel, P. Wenger, S. Rentsch, P. Sudan, P. Mauron, and C. Emmenegger, J. Power Sour., 118(1-2), 1-7 (2003). https://doi.org/10.1016/S0378-7753(03)00054-5