• 제목/요약/키워드: thermal crack

검색결과 736건 처리시간 0.02초

층간균열이 존재하는 균일 열유동하의 섬유강화 적층복합재료의 열응력해석 (Thermal Stresses in a Laminated Fiber-Reinforced Composite Containing an Interlaminar Crack Under a Uniform Heat Flow)

  • 최형집;오준성;이강용
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.887-902
    • /
    • 1994
  • Within the framework of anisotropic thermoelasticity, the problem of an interlaminar crack in a laminated fiber-reinforced composite subjected to a uniform heat flow is investigated. Under a state of generalized plane deformation, dissimilar anisotropic half-spaces with different fiber orientations are considered to be bound together by a matrix interlayer containing the crack. The interlayer models the matrix-rich interlaminar region of the fibrous composite laminate. Based on the flexibility/stiffness matrix approach, formulation of the current crack problem results in having to solve two sets of singular integral equations for temperature and thermal stress analyses. Numerical results are obtained, illustrating the parametric effects of laminate stacking sequence, relative crack size, crack location, crack surface partial insulation, and fiber volume fraction on the values of mixed mode thermal stress intensity factors.

천이상태에 있는 커스프균열에 대한 열응력세기계수의 경계요소 해석 (Boundary Element Analysis of Thermal Stress Intensity Factors for Cusp Crack in Transient State)

  • 이강용;홍정균
    • 대한기계학회논문집
    • /
    • 제16권9호
    • /
    • pp.1700-1710
    • /
    • 1992
  • 본 연구에서는 경계요소법에 의해 천이상태 열전도문제를 해석하는 프로그램 과 Sladek등이 제안한 열탄성 경계적분방정식을 기초로 하여 열탄성문제를 해석하는 프로그램을 개발하여, 유한체 내에 존재하는 Griffith 균열에 대해 정상 및 천이상태 에서 계산한 열응력세기계수와 유한체 내에 존재하는 대칭 입술형 커스프균열(symme- tric lip cusp crack)에 대해 정상상태에서 열응력세기계수를 계산한다. 그 결과를 기존의 해와 비교하여 프로그램의 타당성을 입증한다. 그후 대칭 입술형 커스프균열 에 대한 천이상태에서의 열응력세기계수를 계산하고자 한다.

Engineering critical assessment of RPV with nozzle corner cracks under pressurized thermal shocks

  • Li, Yuebing;Jin, Ting;Wang, Zihang;Wang, Dasheng
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2638-2651
    • /
    • 2020
  • Nozzle corner cracks present at the intersection of reactor pressure vessels (RPVs) and inlet or outlet nozzles have been a persistent problem for a number of years. The fracture analysis of such nozzle corner cracks is very important and critical for the efficient design and assessment of the structural integrity of RPVs. This paper aims to perform an engineering critical assessment of RPVs with nozzle corner cracks subjected to several transients accompanied by pressurized thermal shocks. The critical crack size of the RPV model with nozzle corner cracks under transient loading is evaluated on failure assessment curve. In particular, the influence of cladding on the crack initiation of nozzle corner crack under thermal transients is studied. The influence of primary internal pressure and secondary thermal stress on the stress field at nozzle corner and SIF at crack front is analyzed. Finally, the influence of different crack size and crack shape on the final critical crack size is analyzed.

수직 균일 열유동하에 있는 접합 경계면 균열의 열응력세기계수 결정 (Determination of Thermal Dtress Intensity Factors for the Interface Crack under Vertical Uniform Heat Flow)

  • 이강용;설창원
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.201-208
    • /
    • 1991
  • 본 연구에서는 균일 열유동이 접합면에 수직으로 흐르고 접합 경계면 균열의 열경계조건이 단열되어 있는 경우에 균질 및 접합재료 모두에 적용될 수 있는 열응세 기계수를 복소해석방법을 이용하여 구하고자 한다.

일반 형상의 커프스형 강체균열에 대한 열응력세기계수 결정 (Determination of thermal Stress Intensity Factors for General Cusp-Crack Shaped Rigid Inclusion)

  • 이강용;장용훈
    • 대한기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.1216-1220
    • /
    • 1992
  • 본 연구에서는 Lee등의 연구를 일반화하기 위하여 급수 형태의 등각사상함수 로 표현되는 일반형태의 커스프형 강체함유물이 존재하는 경우에 대하여 복소 포텐셜 함수와 TSIF에 대한 일반해를 구하기로 한다.

부분 열유동이 있는 접합 경계면균열의 열응력세기계수 결정 (Thermal Stress Intensity Factors for Partially Insulated Interface Crack under Uniform Heat Flow)

  • 이강용;박상준
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1705-1712
    • /
    • 1994
  • Hilbert problems are derived to evaluate thermal stress intensity factors for a partially insulated crack subjected to vertically uniform heat flow in infinite bonded dissimilar materials. In case of fully insulated crack surface, the present solutions of thermal stress intensity factors are reduced into the same as the previous results. For the homogeneous material, mode II thermal stress intensity factor only exists. However, in the bonded dissimilar materials, both mode I and II thermal stress intensity factors are obtained. Specially, in this case, mode II thermal stress intensity factor is dominent. Also, thermal stress intensity factors are strongly influenced by the material properties. Thermal stress intensity factors decrease when the degree of insulation decreases.

지하철 구조물의 온도균열제어를 위한 시공조건별 해석적 영향 분석 (Parametric Analysis on Construction Conditions to Control Thermal Cracks in Subway Concrete Structure)

  • 김연태;김상철
    • 한국철도학회논문집
    • /
    • 제7권4호
    • /
    • pp.312-318
    • /
    • 2004
  • The wall in a subway structure is easily subject to crack occurrence since its expansion and shrinkage associated with hydration heat reaction is constrained by the slab. The greater problem is that the crack in the wall may be developed to pass through thickness and eventually deteriorate the structure due to rusting of reinforced steel. Thus, this study aims at controlling thermal cracks as much as possible and determining an optimized size of concrete placement through hydration heat analysis. For this study, effects of placement height, length, temperature and types of cement on the thermal cracks were evaluated by temperature rise, thermal stress and crack index. As results of parametric study, it was found that placement height and length do not have an effect on the temperature rise but have significant one on thermal stress which relates to direct possibility of thermal crack occurrence. This means that proper selection of size balancing internal constraint with external one is much more important than reducing the placement height and length simply. In order to prevent from thermal cracks most effectively, in addition, it was noted to reduce placement temperature and to use the cement blended with mineral admixture.

온도 의존성 물성치를 가지는 유한한 전도층에서의 전기/열하중을 받는 균열의 해석 (Electrothermal Crack Analysis in a Finite Conductive Layer with Temperature-dependent Material Properties)

  • 장용훈;이상영
    • 대한기계학회논문집A
    • /
    • 제30권8호
    • /
    • pp.949-956
    • /
    • 2006
  • The method of Greenwood and Williamson is extended to obtain a solution to the coupled non-linear problem of steady-state electrical and thermal conduction across a crack in a conductive layer, for which the electrical resistivity and thermal conductivity are functions of temperature. The problem can be decomposed into the solution of a pair of non-linear algebraic equations involving boundary values and material properties. The new mixed-boundary value problem given from the thermal and electrical boundary conditions for the crack in the conductive layer is reduced in order to solve a singular integral equation of the first kind, the solution of which can be expressed in terms of the product of a series of the Chebyshev polynomials and their weight function. The non-existence of the solution for an infinite conductor in electrical and thermal conduction is shown. Numerical results are given showing the temperature field around the crack.

열에너지를 고려한 파괴인성치 고찰 (Evaluation for Fracture Toughness with Considering the Thermal Energy)

  • 박재실;김정표;석창성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.9-15
    • /
    • 2001
  • In the case of a crack propagation, a portion of the work of inelastic deformation near the crack tip is dissipated as heat. In order to understand the thermal effect on fracture toughness, tensile test was carried out using thermocouples to monitor the variation of temperature with SA516 Gr70. The experimental results show that the temperature of specimen was increased $3.6^{\circ}C$ at static load condition. And the thermal effect was investigated connected with the steady-state stress in the vicinity of a crack propagation in the elastic-plastic C-T specimen theoretically. And fracture toughness, the energy to make crack surfaces, presented correctively. The fracture toughness with considering heat at the blunting of the crack tip ws lower about 19.3% than that of ignoring heat. So, it is resonable to apply the fracture toughness with considering thermal energy and it would be good explanation for constraint effect depending on the configuration in the presence of excessive plasticity.

  • PDF

열에너지를 고려한 파괴인성치 고찰 (Evaluation for Fracture Toughness with Considering the Thermal Energy)

  • 김정표;임창현;석창성
    • 한국안전학회지
    • /
    • 제16권2호
    • /
    • pp.1-6
    • /
    • 2001
  • In the case of a crack propagation a portion of the work of inelastic deformation near the crack tip is dissipated as heat. In order to understand the thermal effect on fracture toughness, tensile tests were carried out using thermocouples to monitor the variation of temperature. The experimental results show that the temperature of specimen was increased $5.4^{\circ}C$ at static load condition. And the thermal effect is investigated connected with the steady-state stress in the vicinity of a crack propagation in the elastic-plastic C-T specimen theoretically. And fracture toughness, the energy to make crack surfaces, presented correctively. The fracture toughness with considering heat at the blunting of the crack tip is lower about 16.9% than that of ignoring heat. So, it is resonable to apply the fracture toughness with considering thermal energy and it would be good explanation for constraint effect depending on the configuration in the presence of excessive plasticity.

  • PDF