Browse > Article
http://dx.doi.org/10.3795/KSME-A.2006.30.8.949

Electrothermal Crack Analysis in a Finite Conductive Layer with Temperature-dependent Material Properties  

Jang Yong-Hoon (연세대학교 기계공학부)
Lee Sang-Young (연세대학교 대학원 기계공학부)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.30, no.8, 2006 , pp. 949-956 More about this Journal
Abstract
The method of Greenwood and Williamson is extended to obtain a solution to the coupled non-linear problem of steady-state electrical and thermal conduction across a crack in a conductive layer, for which the electrical resistivity and thermal conductivity are functions of temperature. The problem can be decomposed into the solution of a pair of non-linear algebraic equations involving boundary values and material properties. The new mixed-boundary value problem given from the thermal and electrical boundary conditions for the crack in the conductive layer is reduced in order to solve a singular integral equation of the first kind, the solution of which can be expressed in terms of the product of a series of the Chebyshev polynomials and their weight function. The non-existence of the solution for an infinite conductor in electrical and thermal conduction is shown. Numerical results are given showing the temperature field around the crack.
Keywords
Electrical/Thermal Conduction; Crack; Temperature-Dependent Material Peroperty;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Stroud, A. H. and Secrest, D. 1966, 'Gaussian Quadrature Formula,' Prentice Hall, Englewood Cliffs
2 Choi, H. J. and Thangitharn, S., 1991 'Heat Conduction in Laminated Anisotropic Composites with a Debonding,' Int. J. Eng. Sci, Vol. 29, pp. 819-829   DOI   ScienceOn
3 Wang. P, Tian, Z. G. and Bai, X. Z., 2003, 'Electrothermal Stress in Conductive Body with Collinear Cracks,' Theor. Appl. Fract. Mech,' Vol. 40 pp. 187-195   DOI   ScienceOn
4 Fournet, G., 1997, 'Phenomena in Conductors Having Temperature Dependent Electrical and Thermal Conductivities,' J. Physique III, Vol. 7, pp. 2003-2029   DOI   ScienceOn
5 Kohlrausch, F., 1900, 'Uber den Stationaren Temperaturzustand Eines Elektrisch Geheizten Leiters,' Ann. Phys.Lpz, Vol. 1, pp. 132-158
6 Diesselhorst, H. 1900, 'Uber das Problem Eines Elektrisch Erwarmten Leiters,' Ann. Phys. Lpz, Vol. 1, pp.312-325
7 Olsson, J., 2001, 'Self-heating Effects in SOI Bipolar Transistors,' Microelectron. Eng., Vol .56, pp. 339-352   DOI   ScienceOn
8 Friedman, B., 1969, 'Lectures on ApplicationOriented Mathematics,' Holden-Day, San Francisco, pp. 1-35
9 Muskhelishvili, N. I., 1953, 'Singular Integral Equations,' Noordhoff, Groningen, pp. 76-105
10 Jang, Y. H. Barber, J. R. and Hu; S. J., 1998, 'Electrical Conductance Between COnductors with Dissimilar Temperature-Dependent Material Properties,' J. Phys. D: Appl. Phys, Vol. 31, pp. 3197-3205   DOI   ScienceOn
11 Saka, M. and Abe, H., 1992, 'Path-Independent Integrals for Heat Conduction Analysis in Electrothermal Crack Problems,' J. Thermal Stresses, Vol. 15, pp. 71-83   DOI
12 Greenwood, J. A. and Williamson, J. B. P., 1958, 'Electrical Conduction in Solids: II. Theory of Temperature-Dependent Conductors,' Proc. R. Soc. Lond. A, Vol. 246, pp. 13-31   DOI