• Title/Summary/Keyword: thermal change

Search Result 3,140, Processing Time 0.039 seconds

Development of monitoring device with thermal line sensors and its use for grouting and leakage problems (그라우팅과 누수 문제에 대처한 온도센서 배열 모니터링 장치 개발)

  • Kim, Jung-Yul;Honarmand, H.;Kim, Yoo-Sung;Nam, Ji-Yeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.509-516
    • /
    • 2004
  • The measurement of abnormal change of temperature(temperature anomaly) will help determine the safety of various engineering constructions, as the measurement in body often used to diagnose one's health. Temperature anomaly can be occurred in leakage or seepage of water flow in rocks, and in ground water table etc. Grouting materials injected in fractured rocks generate heat during hardening process. The degree of temperature change is associated directly with heat flow characteristics, that is, thermal conductivity, specific heat capacity. density of the surrounding rocks and can afford to assess the grouting efficiency. However, in practice, the use of traditional temperature measuring technique composed of only one single thermal sensor has been fundamentally limited to acquire thermal data sufficient to use for that, partly due to the time-consuming measuring work, partly due to the non-consecutive quality of data. Thus, in this paper, a new concept of temperature measuring technique, what we call, thermal line sensor technique is introduced. In this, the sensors with an accuracy of $0.02^{\circ}$ are inserted at regular intervals in one line cable and addressed by a control device, which enables to fundamentally enhance the capability of data acquisition in time and space. This new technology has been demonstrated on diverse field model experiments. The results were simply meant to be illustrative of a potential to be used for various kinds of temperature measurements encountered in grouting and leakage problems.

  • PDF

Performance Comparison of Thermal Imagers with Uncooled and Cooled Detectors For Fire Fighting Application (비냉각형 적외선 센서를 이용한 열상시스템과 냉각형 적외선 센서를 이용한 열상시스템의 화재 진압 시 성능 비교)

  • Kim, Byung-Hyuk;Jung, Han;Kim, Young-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.128-132
    • /
    • 2007
  • Thermal Imaging systems are reported to be crucial for fire fighting and beginning to be used by fire fighters. The performance of thermal imaging system is determined by both the radiation of infrared from the target and the attenuation of infrared signal in the optical path by the absorption, scattering, diffraction and reflection. In the scene of fire, water drops with various sizes such as vaporized water, wafer mist from sprinkler, and wafer to suppress the fire reside with various gas generated by burning. To measure the transmission of infrared radiation in the scene of fire, fire simulating system and thermal imagers with cooled detector which detects $3{\sim}5{\mu}m$ infrared and uncooled detector fabricated by the MEMS technology which detects $8{\sim}12{\mu}m$ infrared. are made. With thermal imagers and Ire simulating system, the change of thermal image with respect to the change of visibility controlled with the burned fas was measured. It was found that the transmission of infrared was not reduced by the burned gas, which could be explained by the long wavelength of infrared ray compared with visible ray. However, the transmission of infrared ray was largely reduced by the combination of burned gas and water mist supplied by sprinkler. This is contrary to the results of calculated transmission through the pure water mist and shows that the transmission of infrared ray is mostly affected by the compounds of water mist and burned gas. In this case, it was found that the uncooled detector which detects $8{\sim}12{\mu}m$ infrared ray is better than cooled detector which detects $3{\sim}5{\mu}m$ infrared ray for fire fighting.

Thermal Environment Characteristic of the Heat Storage Gypsum Board Included with Phase Change Material (PCM 함유된 축열석고보드의 열환경특성)

  • Kwon, Oh-Hoon;Yun, Huy-Kwan;Han, Seong-Kuk;Ahn, Dae-Hyun;Shim, Myeong-Jin;Cho, Sung-Woon;Park, Jong-Soon;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.570-574
    • /
    • 2010
  • The main function of conventional insulation materials is only to block the heat transfer and reduce heat loss from the building. On the other hand, thermal storage materials can work as an energy saver by absorbing or emitting heat within a specific temperature range. Thermal storage materials for building can maintain a constant temperature by effectively regulating the cycle of indoor temperature. As a result, we can enhance the performance of a cooling and heating system efficiently. In this study, phase change materials (PCMs) were added as thermal storage materials into gypsum boards which are extensively used for building material and we found out the thermal environmental characteristics. In addition, we checked out some problems when applying the thermal storage materials to buildings. Finally, This study set out to examine the degree of environmental-friendly characteristics of thermal storage building materials by analyzing the amount of TVOC and HCHO contents with the possibility of pollutants emission.

Experimental Study on the Effect of Flow around Solid Combustibles and Thermal Thickness on Heat Release Rate Characteristics (고체 가연물 주위의 유동과 열적 두께의 변화가 열방출률 특성에 미치는 영향에 관한 실험적 연구)

  • Hong, Ter-Ki;Seo, Dong-Pyo;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.28-34
    • /
    • 2020
  • In this study, an ISO 5660-1 cone calorimeter experiment was conducted to examine the effects of changes in flow and thermal thickness around solid combustibles on heat release rate characteristics. Polymethyl methacrylate (PMMA) is a solid combustible material that does not generate char during the combustion reaction. Hence, it was selected for the experiment, and the thermal penetration depth was calculated to distinguish the thermal thickness of PMMA. Furthermore, the thermal decomposition characteristics were analyzed by measuring the heat release rate measured during the combustion of PMMA. This was performed after generating the forced flow around the combustibles by setting the duct flow of the cone calorimeter to 12, 24, and 40 L/s. The results confirmed that the thermal release rate of the thermally thin combustible material was not significantly affected by the change in the surrounding flow. Hence, the thermally thick combustible material was significantly affected by the change in the flow rate.

Assessment of Thermal Stress in Temporary Bridge (가교량의 온도응력 평가)

  • Park, Young Hoon;Lee, Seung Yong;Byun, Yun Joo;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.1-10
    • /
    • 1998
  • The temporary steel bridges which are constructed for detour and constructional expediency are consisted of H-beams(as superstructure) and H-piles(as substructure). Because these members are fastened by high-tension bolts, there are no expansion joints in these bridges. So, these kinds of bridges have no system which can relieve the excessive thermal stress. In this investigation, monitoring system was set up at temporary steel bridge and stress and temperature changes of H-beam are monitored. From these measured data, it is analyzed that the relationship between ambient and main-girder temperature change, between temperature and stress change. With these analyses, it is resulted that the thermal stress take main part of stress variation in this bridge and the restrain of thermal longitudinal displacement of H-pile. In addition, because the connection part of H-beam to H-beam is weak in the continuous spans, the sub-modelling is well apt to reflect the effect of thermal stress.

  • PDF

Effect of Thermal Contact Resistence on the Heat Transfer Characteristics of Air Flow around the Finned Micro-Channel Tube for MF Evaporator (Micro-Channel형 열교환기에 부착된 핀의 열접촉저항이 열전달 특성에 미치는 영향)

  • Park, Yong-Seok;Sung, Hong-Seok;Sung, Dong-Min;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.121-126
    • /
    • 2021
  • In this study, the effect of thermal contact resistance between pin-channel tubes on the heat transfer characteristics was analytically examined around the channel tubes with the pins attached to two consecutive arranged channel pipes. The numerical results showed that the heat transfer coefficient decreased geometrically as the thermal contact resistance increased, and the corresponding temperature change on the contact surface increased as the thermal contact resistance increased. The thinner the pin, the more pronounced the geometric drop in the heat transfer coefficient. It was confirmed that the higher the height of the pin, the higher was the heat transfer coefficient, however, the greater the size of the thermal contact resistance, the smaller was the heat transfer coefficient. It was found that the temperature change in the inner wall of the channel tube did not significantly affect the heat transfer characteristics owing to the thermal contact resistance. Furthermore, the velocity of air at the entrance of the channel tube was proportional to the heat transfer coefficient due to a decrease in the convective heat resistance corresponding to an increase in the flow rate.

A Study on the Thermal, Electrical Characteristics of Ge-Se-Te Chalcogenide Material for Use in Phase Change Memory

  • Nam, Ki-Hyun;Chung, Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.223-226
    • /
    • 2008
  • $Ge_1Se_1Te_2$ chalcogenide amorphous materials was prepared by the conventional melt-quenching method. Samples were processed bye-beam evaporator systems and RF-sputtering systems. Phase change characteristics were analyzed by measuring glassification temperature, crystallization temperature and density of bulk material. The thermal characteristics were measured at the temperature between 300 K and 700 K, and the electrical characteristics were studied within the range from 0 V to 3 V. The obtained results agree with the electrothermal model for Phase-Change Random Access Memory.

A Study on Cooling Characteristics of Low Temperature Thermal Storage Material with Additives (첨가제를 첨가한 저온축열물질의 냉각특성에 대한 연구)

  • Chung, Nak-Kyu;Kim, Jin-Heung;Chung, Jong-Hun;Kim, Chang-Oh;Kang, Seung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1746-1750
    • /
    • 2004
  • The objective of this study is to investigate the effect of supercooling repression on the clathrate compound by adding additives. For this purpose, phase change temperature and supercooling were measured when additives added to TMA30wt% clathrate for heat source temperature of $-6^{\circ}C$. The experimental results show that the phase change temperature with the chloroform of 0.1wt% is higher by $0.3^{\circ}C$ than TMA30wt% and the supercooling with the surfactant 0.1wt% is reduced by $9.2^{\circ}C$.

  • PDF

Thermal characteristics of high-temperature measurement sensor using fiber Bragg grating (FBG를 이용한 고온 측정 센서의 온도특성)

  • Son, Yong-Hwan;Han, Sang-Kook
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.261-266
    • /
    • 2008
  • In this paper, we present thermal characteristics of high-temperature measurement sensor using fiber Bragg grating(FBG), including peak reflectivity, FWHM bandwidth and various normalized refractive index change along temperature variation. The temperature stability of FBG temperature sensor can be changed by varying the refractive index change and grating length. The proposed FBG temperature sensor can measure up to about $600^{\circ}C$ and 1000 hours of heating time.

Analysis of the thermoelastic begavior on the contact joint of compound cylinder (원통결합부의 열특성 해석 (제1보) -주축베어링 내륜계의 수치해석을 중심으로-)

  • 김선민;박기환;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.629-634
    • /
    • 1996
  • Heat generation in machine operating condition makes thermal deformation and thermalstress in the structure, which results in the change the contact characteristics of machine joint such s change of shrinkage fit, contact heat conductance and contact pressure. As the change of contact pressure is related to variation of static, dynamic and thermalcharacteristics, the prediction of transient contact perssure is strongly required. This paper presents some analytical results which will be effective to predict static and dynamic characteristics of the compound cylindrical structure.

  • PDF