• Title/Summary/Keyword: thermal bonding

Search Result 567, Processing Time 0.031 seconds

The Effect of Si3N4 Addition on Nitriding and Post-Sintering Behavior of Silicon Powder Mixtures

  • Park, Young-Jo;Ko, Jae-Woong;Lee, Jae-Wook;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.363-368
    • /
    • 2012
  • Nitriding and post-sintering behavior of powder mixture compacts were investigated. As mixture compacts are different from simple Si compacts, the fabrication of a sintered body with a mixture composition has engineering implications. In this research, in specimens without a pore former, the extent of nitridation increased with $Si_3N_4$ content, while the highest extent of nitridation was measured in $Si_3N_4$-free composition when a pore former was added. Large pores made from the thermal decomposition of the pore former collapsed, and they were filled with a reaction product, reaction-bonded silicon nitride (RBSN) in the $Si_3N_4$-free specimen. On the other hand, pores from the decomposed pore former were retained in the $Si_3N_4$-added specimen. Introduction of small $Si_3N_4$ particles ($d_{50}=0.3{\mu}m$) into a powder compact consisting of large silicon particles ($d_{50}=7{\mu}m$) promoted close packing in the green body compact, and resulted in a stable strut structure after decomposition of the pore former. The local packing density of the strut structure depends on silicon to $Si_3N_4$ size ratio and affected both nitriding reaction kinetics and microstructure in the post-sintered body.

Effective application duration of sodium ascorbate antioxidant in reducing microleakage of bonded composite restoration in intracoronally-bleached teeth

  • Park, Jae-Young;Kwon, Tae-Yub;Kim, Young-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.38 no.1
    • /
    • pp.43-47
    • /
    • 2013
  • Objectives: The aim of this study was to determine an appropriate application duration of sodium ascorbate (SA) antioxidant gel in reducing microleakage of bonded composite restoration in intracoronally-bleached teeth. Materials and Methods: Eighty endodontically-treated human incisors were randomly divided into eight groups: control, no bleaching; IB and DB, immediate and delayed bonding after bleaching, respectively; S10m, S60m, S24h, S3d and S7d, bleaching + SA gel for 10 min, 60 min, 24 hr, 3 day and 7 day, respectively. For bleaching, a mixture of 30% hydrogen peroxide and sodium perborate was applied for 7 day. All access cavities were restored using One-Step adhesive (Bisco Inc.) and then Aelite LS Packable composite (Bisco Inc.). The bonded specimens were subjected to 500 thermal cycles, immersed in 1% methylene blue for 8 hr, and longitudinally sectioned. Microleakage was assessed with a 0 - 4 scoring system and analyzed using nonparametric statistical methods (${\alpha}$ = 0.05). Results: Group IB showed a significantly higher microleakage than the control group (p = 0.006) and group DB a statistically similar score to the control group (p > 0.999). Although groups S10m, S60m, and S24h exhibited significantly higher scores than group DB (p < 0.05), the microleakage in groups S3d and S7d was statistically similar to that in group DB (p = 0.771, p > 0.999). Conclusions: Application of SA gel for 3 day after nonvital bleaching was effective in reducing microleakage of composite restoration in intracoronally-bleached teeth.

Fabrication of Polypyrrole Deposited Poly (vinyl alcohol) Nanofiber Webs by Dip-coating and In situ Polymerization and their Application to Textile Electrode Sensors (Polypyrrole을 증착시킨 Poly(vinyl alcohol) 나노섬유 제조 및 전극용 텍스타일 센서로의 활용 가능성 탐색 -딥 코팅과 현장중합 증착 방식을 중심으로-)

  • Yang, Hyukjoo;Kim, Jaehyun;Lee, Seungsin;Cho, Gilsoo
    • Fashion & Textile Research Journal
    • /
    • v.22 no.3
    • /
    • pp.386-398
    • /
    • 2020
  • This study compared dip-coating and in situ polymerization methods for the development of nanofiber-based E-textile using polypyrrole. Nanofiber webs were fabricated by electrospinning an aqueous poly (vinyl alcohol) (PVA) solution. Subsequently, the PVA nanofiber web underwent thermal treatment to improve water resistance. Dip-coating and in situ polymerization methods were used to deposit polypyrrole on the surfaces of the nanofiber web. An FE-SEM analysis was also conducted to examine specimen surface characteristics along with EDS and FT-IR that analyzed the chemical bonding between polypyrrole and specimens. The line resistance and sheet resistance of the treated specimens were measured. Finally, an electrocardiogram (ECG) was measured with textile sensors made of the polypyrrole-deposited PVA nanofiber webs. The polypyrrole-deposited PVA nanofiber webs fabricated by dip-coating dissolved in the dip-coating solution and indicated damage to the nanofibers. However, in the case of in situ polymerization, polypyrrole nanoparticles were deposited on the surface and inter-web structure of the PVA nanofiber web. The resistance measurements indicated that polypyrrole-deposited PVA nanofiber webs fabricated by in situ polymerization with an average sheet resistance of 5.3 k(Ω/□). Polypyrrole-deposited PVA nanofiber webs fabricated by dip-coating showed an average sheet resistance of 57.3 k(Ω/□). Polypyrrole-deposited PVA nanofibers fabricated by in situ polymerization showed a lower line and sheet resistance; in addition, they detected the electrical activity of the heart during ECG measurements. The electrodes made from polypyrrole-deposited PVA nanofiber webs by in situ polymerization showed the best performance for sensing ECG signals among the evaluated specimens.

Electrically conductive nano adhesive bonding: Futuristic approach for satellites and electromagnetic interference shielding

  • Ganesh, M. Gokul;Lavenya, K.;Kirubashini, K.A.;Ajeesh, G.;Bhowmik, Shantanu;Epaarachchi, Jayantha Ananda;Yuan, Xiaowen
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.729-744
    • /
    • 2017
  • This investigation highlights rationale of electrically conductive nano adhesives for its essential application for Electromagnetic Interference (EMI) Shielding in satellites and Lightning Strike Protection in aircrafts. Carbon Nano Fibres (CNF) were functionalized by electroless process using Tollen's reagent and by Plasma Enhanced Chemical Vapour Deposition (PECVD) process by depositing silver on CNF. Different weight percentage of CNF and silver coated CNF were reinforced into the epoxy resin hardener system. Scanning Electron Microscopy (SEM) micrographs clearly show the presence of CNF in the epoxy matrix, thus giving enough evidence to show that dispersion is uniform. Transmission Electron Microscopy (TEM) studies reveal that there is uniform deposition of silver on CNF resulting in significant improvement in interfacial adhesion with epoxy matrix. There is a considerable increase in thermal stability of the conductive nano adhesive demonstrated by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Four probe conductivity meters clearly shows a substantial increase in the electrical conductivity of silver coated CNF-epoxy composite compared to non-coated CNF-epoxy composite. Tensile test results clearly show that there is a significant increase in the tensile strength of silver coated CNF-composites compared to non-coated CNF-epoxy composites. Consequently, this technology is highly desirable for satellites and EMI Shielding and will open a new dimension in space research.

Hydrothermal Synthesis of Vanadium (IV) Dioxide and its Thermochromic Property (바나듐(IV) 이산화물의 수열합성 및 이의 열변색 특성)

  • Lee, Hun Dong;Son, Dae Hee;Lee, Won Ki;Jin, Young Eup;Lee, Gun-Dae;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.427-431
    • /
    • 2015
  • In this study, vanadium dioxide ($VO_2$) powder well known as a thermochromic material was prepared from $V_2O_5$ powder and oxalic acid dihydrate by hydrothermal and calcination process at various conditions. The chemical bonding and crystal structures in addition to thermal property of samples were determined using FE-SEM, XRD, XPS, and DSC. Also, spectroscopic and thermochromic properties of film samples were analyzed by UV-Vis-NIR spectroscopy after the thin film was prepared from the sol dispersed with the size of below 50 nm by the ball-milling of powder sample. With increasing the calcination temperature, the phase transition temperature of samples increased from $40^{\circ}C$ to $70^{\circ}C$ due to the increase of particle size.

Coating of two kinds of bioactive glass on Ti6Al4V alloy (Ti6Al4V 합금에 두 종류의 생체활성화 유리 코팅)

  • Kang, Eun-Tae;Lee, Nam-Young;Choi, Hyun-Bin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.5
    • /
    • pp.206-210
    • /
    • 2018
  • Two kinds of bioactive glass were coated on the Ti6Al4V alloy by the enameling technique. In order to reduce the thermal stress due to the difference in expansion coefficient with the alloy with the secondary coating forming hydroxyapatite, the difference in expansion coefficient between the alloy and the two glasses was adjusted at $2{\times}10^{-6}/^{\circ}C$ intervals. FE-SEM and EDS analysis showed that good adhesion was formed between the Ti6Al4V alloy and the primary coating by diffusion bonding. After immersion in SBF solution, it was confirmed from FT-IR that hydroxycarbonate apatite formed in the secondary coating was not different from bulk bioactive glass.

EO Performances of the Ion Beam Aligned TN-LCD on a Carbon Nitride Thin Film Surface

  • Park, Chang-Joon;Hwang, Jeoung-Yeon;Kang, Hyung-Ku;Seo, Dae-Shik;Ahn, Han-Jin;Kim, Jong-Bok;Kim, Kyung-Chan;Baik, Hong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1121-1124
    • /
    • 2004
  • Carbon Nitride exhibits high electrical resistivity and thermal conductivity that are similar to the properties shown by diamond-like carbon (DLC) films. These diamond-like transport properties in Carbon Nitride come in a material consisting of $sp^2$-bonded carbon versus the $sp^3$-carbon of DLC. The diamond-like properties and nondiamond-like bonding make NDLC an attractive candidate for applications. Liquid crystal (LC) alignment capabilities with ion beam exposure on carbon nitride thin films and Electro-Optical (EO) performances of the ion-beam aligned twisted nematic liquid crystal display (TN-LCD) with oblique ion beam exposure on the Carbon Nitride thin film surface were studied. An excellent uniform alignment of the nematic liquid crystal (NLC) alignment with the ion beam exposure on the Carbon Nitride thin films was observed. In addition, the good EO properties of the ion-beam-aligned TN-LCD were achieved. Finally, we achieved the residual DC property of the ion-beam- aligned TN-LCD on the Carbon Nitride thin film.

  • PDF

Effect of CH4 Concentration on the Dielectric Properties of SiOC(-H) Film Deposited by PECVD (CH4 농도 변화가 저유전 SiOC(-H) 박막의 유전특성에 미치는 효과)

  • Shin, Dong-Hee;Kim, Jong-Hoon;Lim, Dae-Soon;Kim, Chan-Bae
    • Korean Journal of Materials Research
    • /
    • v.19 no.2
    • /
    • pp.90-94
    • /
    • 2009
  • The development of low-k materials is essential for modern semiconductor processes to reduce the cross-talk, signal delay and capacitance between multiple layers. The effect of the $CH_4$ concentration on the formation of SiOC(-H) films and their dielectric characteristics were investigated. SiOC(-H) thin films were deposited on Si(100)/$SiO_2$/Ti/Pt substrates by plasma-enhanced chemical vapor deposition (PECVD) with $SiH_4$, $CO_2$ and $CH_4$ gas mixtures. After the deposition, the SiOC(-H) thin films were annealed in an Ar atmosphere using rapid thermal annealing (RTA) for 30min. The electrical properties of the SiOC(-H) films were then measured using an impedance analyzer. The dielectric constant decreased as the $CH_4$ concentration of low-k SiOC(-H) thin film increased. The decrease in the dielectric constant was explained in terms of the decrease of the ionic polarization due to the increase of the relative carbon content. The spectrum via Fourier transform infrared (FT-IR) spectroscopy showed a variety of bonding configurations, including Si-O-Si, H-Si-O, Si-$(CH_3)_2$, Si-$CH_3$ and $CH_x$ in the absorbance mode over the range from 650 to $4000\;cm^{-1}$. The results showed that dielectric properties with different $CH_4$ concentrations are closely related to the (Si-$CH_3$)/[(Si-$CH_3$)+(Si-O)] ratio.

Comparative evaluation of effects of different surface treatment methods on bond strength between fiber post and composite core

  • Mosharraf, Ramin;Yazdi, Najmeh Baghaei
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.2
    • /
    • pp.103-108
    • /
    • 2012
  • PURPOSE. Debonding of a composite resin core of the fiber post often occurs at the interface between these two materials. The aim of this study was to evaluate the effects of different surface treatment methods on bond strength between fiber posts and composite core. MATERIALS AND METHODS. Sixty-four fiber posts were picked in two groups (Hetco and Exacto). Each group was further divided into four subgroups using different surface treatments: 1) silanization; 2) sandblasting; 3) Treatment with 24% $H_2O_2$, and 4) no treatment (control group). A cylindrical plexiglass matrix was placed around the post and filled with the core resin composite. Specimens were stored in 5000 thermal cycles between $5^{\circ}C$ and $55^{\circ}C$. Tensile bond strength (TBS) test and evaluation using stereomicroscope were performed on the specimen and the data were analyzed using two-way ANOVA, Post Hoc Scheffe tests and Fisher's Exact Test (${\alpha}$=.05). RESULTS. There was a significant difference between the effect of different surface treatments on TBS ($P$ <.001) but different brands of post ($P$=.743) and interaction between the brand of post and surface treatment ($P$=.922) had no significant effect on TBS. Both silanization and sandblasting improved the bonding strength of fiber posts to composite resin core, but there were not any significant differences between these groups and control group. CONCLUSION. There was not any significant difference between two brands of fiber posts that had been used in this study. Although silanization and sandblasting can improve the TBS, there was not any significant differences between surface treatments used.

The Substitution of Inkjet-printed Gold Nanoparticles for Electroplated Gold Films in Electronic Package

  • Jang, Seon-Hui;Gang, Seong-Gu;Kim, Dong-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.25.1-25.1
    • /
    • 2011
  • Over the past few decades, metallic nanoparticles (NPs) have been of great interest due to their unique mesoscopic properties which distinguish them from those of bulk metals; such as lowered melting points, greater versatility that allows for more ease of processability, and tunable optical and mechanical properties. Due to these unique properties, potential opportunities are seen for applications that incorporate nanomaterials into optical and electronic devices. Specifically, the development of metallic NPs has gained significant interest within the electronics field and technological community as a whole. In this study, gold (Au) pads for surface finish in electronic package were developed by inkjet printing of Au NPs. The microstructures of inkjet-printed Au film were investigated by various thermal treatment conditions. The film showed the grain growth as well as bonding between NPs. The film became denser with pore elimination when NPs were sintered under gas flows of $N_2$-bubbled through formic acid ($FA/N_2$) and $N_2$, which resulted in improvement of electrical conductance. The resistivity of film was 4.79 ${\mu}{\Omega}$-cm, about twice of bulk value. From organic anlayses of FTIR, Raman spectroscopy, and TGA, the amount of organic residue in the film was 0.43% which meant considerable removal of the solvent or organic capping molecules. The solder ball shear test was adopted for solderability and shear strength value was 820 gf (1 gf=9.81 mN) on average. This shear strength is good enough to substitute the inkjet-printed Au nanoparticulate film for electroplating in electronic package.

  • PDF