Browse > Article
http://dx.doi.org/10.5805/SFTI.2020.22.3.386

Fabrication of Polypyrrole Deposited Poly (vinyl alcohol) Nanofiber Webs by Dip-coating and In situ Polymerization and their Application to Textile Electrode Sensors  

Yang, Hyukjoo (Dept. of Clothing & Textiles, Yonsei University)
Kim, Jaehyun (Dept. of Clothing & Textiles, Yonsei University)
Lee, Seungsin (Dept. of Clothing & Textiles, Yonsei University)
Cho, Gilsoo (Dept. of Clothing & Textiles, Yonsei University)
Publication Information
Fashion & Textile Research Journal / v.22, no.3, 2020 , pp. 386-398 More about this Journal
Abstract
This study compared dip-coating and in situ polymerization methods for the development of nanofiber-based E-textile using polypyrrole. Nanofiber webs were fabricated by electrospinning an aqueous poly (vinyl alcohol) (PVA) solution. Subsequently, the PVA nanofiber web underwent thermal treatment to improve water resistance. Dip-coating and in situ polymerization methods were used to deposit polypyrrole on the surfaces of the nanofiber web. An FE-SEM analysis was also conducted to examine specimen surface characteristics along with EDS and FT-IR that analyzed the chemical bonding between polypyrrole and specimens. The line resistance and sheet resistance of the treated specimens were measured. Finally, an electrocardiogram (ECG) was measured with textile sensors made of the polypyrrole-deposited PVA nanofiber webs. The polypyrrole-deposited PVA nanofiber webs fabricated by dip-coating dissolved in the dip-coating solution and indicated damage to the nanofibers. However, in the case of in situ polymerization, polypyrrole nanoparticles were deposited on the surface and inter-web structure of the PVA nanofiber web. The resistance measurements indicated that polypyrrole-deposited PVA nanofiber webs fabricated by in situ polymerization with an average sheet resistance of 5.3 k(Ω/□). Polypyrrole-deposited PVA nanofiber webs fabricated by dip-coating showed an average sheet resistance of 57.3 k(Ω/□). Polypyrrole-deposited PVA nanofibers fabricated by in situ polymerization showed a lower line and sheet resistance; in addition, they detected the electrical activity of the heart during ECG measurements. The electrodes made from polypyrrole-deposited PVA nanofiber webs by in situ polymerization showed the best performance for sensing ECG signals among the evaluated specimens.
Keywords
nanofiber web; textile-based electrode; polypyrrole; In situ polymerization; dip-coating;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Bose, S., Kuila, T., Uddin, M. E., Kim, N. H., Lau, A. K., & Lee, J. H. (2010). In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites. Polymer, 51(25), 5921-5928. doi:10.1016/j.polymer.2010.10.014   DOI
2 Castano, L. M., & Flatau, A. B. (2014). Smart fabric sensors and e- textile technologies: Smart Materials and Structures, 23(5), 053001.   DOI
3 Cho, G. S., Yang, Y. J., & Sung, M. S. (2008). Bio monitoring smart clothing and development of current situation of E-textile. Fashion & Textile Research Journal, 10(1), 1-10.
4 Cochrane, C., & Cayla, A. (Eds.) (2013). Polymer-based resistive sensors for smart textiles: Multidisciplinary know-how for smart- textiles developers (pp. 129-153). Sawston: Woodhead.
5 Davidson, R. G., & Turner, T. G. (1995). An IR spectroscopic study of the electrochemical reduction of polypyrrole doped with dodecylsulfate anion. Synthetic Metals, 72(2), 121-128. doi:10. 1016/0379-6779(94)02332-S   DOI
6 Lei, J., Zhu, Y., Shi, C., Xu, Q., & Tao, X. (2020). Appropriate amount of polyaniline coated $Co_3O_4$ nanofibers and their excellent electrochemical properties. Physica E: Low-dimensional Systems and Nanostructures, 117, 113836. doi:10.1016/j.physe.2019.113836   DOI
7 Liu, Y., Zhao, X., & Tuo, X. (2017). Preparation of polypyrrole coated cotton conductive fabrics. The Journal of the Textile Institute, 108(5), 829-834. doi:10.1080/00405000.2016.1193981   DOI
8 Lymberis, A., & Olsson, S. (2003). Intelligent biomedical clothing for personal health and disease management: State of the art and future vision. Telemedicine Journal and E-health, 9(4), 379-386. doi:10.1089/153056203772744716   DOI
9 Macasaquit, A. C., & Binag, C. A. (2010). Preparation of conducting polyester textile by in situ polymerization of pyrrole. Philippine Journal of Science, 139(2), 189-196.
10 Mallapragada, S. K., & Peppas, N. A. (1996). Dissolution mechanism of semicrystalline poly(vinyl alcohol) in water. Journal of Polymer Science Part B: Polymer Physics, 34(7), 1339-1346. doi:10.1002/ (SICI)1099-0488(199605)34:7<1339::AID-POLB15>3.0.CO;2-B   DOI
11 Mansur, H. S., Oréfice, R. L., & Mansur, A. A. (2004). Characteri- zation of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer, 45(21), 7193-7202. doi:10.1016/j.polymer. 2004.08.036   DOI
12 Muller, D., Rambo, C. R., Porto, L. M., Schreiner, W. H., & Barra, G. M. (2013). Structure and properties of polypyrrole/bacterial cellulose nanocomposites. Carbohydrate Polymers, 94(1), 655- 662. doi:10.1016/j.carbpol.2013.01.041   DOI
13 Han, J. H. (2005). Current status on synthesis of carbon nanotubes and their applications to conducting polymer. Polymer Science and Technology, 16(2), 162-175.
14 Hebeish, A., Farag, S., Sharaf, S., & Shaheen, T. I. (2016). Advancement in conductive cotton fabrics through in situ polymerization of polypyrrole-nanocellulose composites. Carbohydrate Polymers, 151, 96-102. doi:10.1016/j.carbpol.2016.05.054   DOI
15 Huang, G., Liu, L., Wang, R., Zhang, J., Sun, X., & Peng, H. (2016). Smart color-changing textile with high contrast based on a single- sided conductive fabric. Journal of Materials Chemistry C, 4(32), 7589-7594.   DOI
16 Im, S. E., Kim, S. Y., Kim, S. Y., Kim, S. J., & Kim, J. H. (2015). A study on improving electrical conductivity for conducting polymers and their applications to transparent electrodes. Applied Chemistry for Engineering, 26(6), 640-647. doi:10.14478/ace. 2015.1105   DOI
17 Jang, E. J., & Cho, G. S. (2019). The classification and investigation of smart textile sensors for wearable vital signs monitoring. Fashion & Textile Research Journal, 21(6), 697-707. doi:10.5805/ SFTI.2019.21.6.697   DOI
18 Jang, K. S. (2001). Chemical synthesis and characterization of soluble polypyrrole. Unpublished doctoral dissertation, Myongji University, Seoul.
19 Jeong, J., & Lee, S. S. (2019). Electrospun poly(vinyl alcohol) nanofibrous membranes containing Coptidis Rhizoma extracts for potential biomedical applications. Textile Research Journal, 89(17), 3506-3518. doi:10.1177/0040517518813679   DOI
20 Deogaonkar, S. C., & Patil, A. J. (2014). Development of conductive cotton fabric by in situ chemical polymerization of pyrrole using ammonium peroxidisulphate as oxidant. Indian Journal of Fiber & Textile Research, 39(1), 135-138.
21 Dias, J. C., Correia, D. M., Botelho, G., Lanceros-Méndez, S., & Sencadas, V. (2014). Electrical properties of intrinsically conductive core-shell polypyrrole/poly(vinylidene fluoride) electrospun fibers. Synthetic Metals, 197, 198-203. doi:10.1016/j.synthmet. 2014.09.013   DOI
22 Hamdani, S. T. A., Fernando, A., Hussain, M. D., & Potluri, P. (2016). Study of electro-thermal properties of pyrrole polymerised knitted fabrics. Journal of Industrial Textiles, 46(3), 771-786. doi:10. 1177/1528083715598653   DOI
23 Nair, S., Hsiao, E., & Kim, S. H. (2008). Melt-welding and improved electrical conductivity of nonwoven porous nanofiber mats of poly(3, 4-ethylenedioxythiophene) grown on electrospun polystyrene fiber template. Chemistry of Materials, 21(1), 115-121. doi:10. 1021/cm8029449   DOI
24 Kang, Y. O., Yoon, I. S., Lee, S. Y., Kim, D. D., Lee, S. J., Park, W. H., & Hudson, S. M. (2010). Chitosan coated poly(vinyl alcohol) nanofibers for wound dressings. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 92B(2), 568-576. doi:10. 1002/jbm.b.31554
25 Park, D. H. (2002). Synthesis and properties of polypyrrole nanotubes and nanowires. Unpublished master's thesis, Korea University, Seoul.
26 Oh, T. I., Yoon, S., Kim, T. E., Wi, H., Kim, K. J., Woo, E. J., & Sadleir, R. J. (2013). Nanofiber web textile dry electrodes for long-term biopotential recording. IEEE Transactions on Biomedical Circuits and Systems, 7(2), 204-211. doi:10.1109/TBCAS.2012. 2201154   DOI
27 Omastova, M., Trchova, M., Kovarova, J., & Stejskal, J. (2003). Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synthetic Metals, 138(3), 447-455. doi:10.1016/S0379-6779(02)00498-8   DOI
28 Otto, C., Milenkovic, A., Sanders, C., & Jovanov, E. (2006). System architecture of a wireless body area sensor network for ubiquitous health monitoring. Journal of Mobile Multimedia, 1(4), 307-326.
29 Park, H. J., Hong, K. H., Kim, S. H., & Shin, S. S. (2007). Development of the practical garment apparatus to measure viral sign of ECG for U-health care. Journal of the Korean Society of Clothing and Textiles, 31(2), 292-299. doi:10.5850/JKSCT.2007. 31.2.292   DOI
30 Santos, J. P. F., Arjmand, M., Melo, G. H. F., Chizari, K., Bretas, R. E. S., & Sundararaj, U. (2018). Electrical conductivity of electrospun nanofiber mats of polyamide 6/polyaniline coated with nitrogen- doped carbon nanotubes. Materials & Design, 141, 333-341. doi: 10.1016/j.matdes.2017.12.052   DOI
31 Sasso, C., Beneventi, D., Zeno, E., Chaussy, D., Petit-Conil, M., & Belgacem, N. (2011). Polypyrrole and polypyrrole/wood-derived materials conducting composites: a review. BioResources, 6(3), 3585-3620.
32 Shin, S. C., Ryu, C. Y., Kang, J. H., Nam, S. H., Song, Y. S., Lim, T. G., Lee, J. W., Park, D. G., Kim, S. H., & Kim, Y. T. (2004). Realization of an E-health system to perceive emergency situations. Journal of Electrical Engineering and Information Science, 31(1B), 322-324.
33 Stoppa, M., & Chiolerio, A. (2014). Wearable electronics and smart textiles: a critical review. Sensors, 14(7), 11957-11992. doi:10.3390/s 140711957   DOI
34 Shabafrooz, V., Mozafari, M., Vashaee, D., & Tayebi, L. (2014). Electrospun nanofibers: from filtration membranes to highly specialized tissue engineering scaffolds. Journal of Nanoscience and Nanotechnology, 14(1), 522-534. doi:10.1166/jnn.2014.9195   DOI
35 Song, K. T., Lee, J. Y., Kim, H. D., Kim, D. Y., Kim, S. Y., & Kim, C. Y. (2000). Solvent effects on the characteristics of soluble polypyrrole. Synthetic Metals, 110(1), 57-63. doi:10.1016/S0379- 6779(99)00267-2   DOI
36 Song, Y. J., Lee, E. S., & Lee, S. S. (2017). Water absorption properties and biodegradability of lignin/PVA nanofiberous webs. Journal of the Korean Society of Clothing and Textiles, 41(3), 517-526. doi:10.5850/JKSCT.2017.41.3.517   DOI
37 Kim, I. H., & Cho, G. S. (2018). Polyurethane nanofiber strain sensors via in situ polymerization of polypyrrole and application to monitoring joint flexion. Smart Materials and Structures, 27(7), 075006.   DOI
38 Kim, J. H., Yang, H. J., & Cho, G. S. (2019) Production of polypyrrole coated PVA nano web electroconductive textiles for application to ECG electrode. Fashion & Textile Research Journal, 21(3), 363-369. doi:10.5805/SFTI.2019.21.3.363   DOI
39 Laforgue, A. (2010). Electrically controlled colour-changing textiles using the resistive heating properties of PEDOT nanofibers. Journal of Materials Chemistry, 20(38), 8233-8235. doi:10.1039/c0jm02307h   DOI
40 Laforgue, A., & Robitaille, L. (2010). Production of conductive PEDOT nanofibers by the combination of electrospinning and vapor-phase polymerization. Macromolecules, 43(9), 4194-4200. doi:10.1021/ma9027678   DOI
41 Tabaciarova, J., Micusik, M., Fedorko, P., & Omastova, M. (2015). Study of polypyrrole aging by XPS, FTIR and conductivity measurements. Polymer Degradation and Stability, 120, 392-401. doi:10.1016/j.polymdegradstab.2015.07.021   DOI
42 Whang, Y. E., Han, J. H., Motobe, T., Watanabe, T., & Miyata, S. (1991). Polypyrroles prepared by chemical oxidative polymerization at different oxidation potentials. Synthetic Metals, 45(2), 151-161. doi:10.1016/0379-6779(91)91799-G   DOI
43 Lee, E. G., Kim, I. H., Liu, H., & Cho, G. S. (2017a). Exploration of AgNW/PU nanoweb as ECG textile electrodes and comparison with Ag/AgCl electrodes. Fibers and Polymers, 18(9), 1749-1753. doi:10.1007/s12221-017-7410-6   DOI
44 Lee, K., & Lee, S. S. (2015). Electrospun zinc oxide/poly(vinyl alcohol) nanofibrous membranes: In vitro and wear trial evaluation of antimicrobial activity. Textile Research Journal, 85(19), 1999- 2008. doi:10.1177/0040517515578325   DOI
45 Lee, S. H., Lee, S. K., Jang, D. S., & Shim, B. S. (2017b). Current research on conducting polymer-carbon nanocomposites for bioengineering applications. Elastomers and Composites, 52(1), 69-80. doi:10.7473/EC.2017.52.1.69   DOI
46 Kim, H. C., & Kang, J. M. (2008). Status and prospects of technology for ubiquitous healthcare. Journal of Electrical Engineering and Information Science, 26(1), 38-45.