• 제목/요약/키워드: thermal and chemical stability

검색결과 993건 처리시간 0.031초

팔라듐 합금 수소분리막의 내구성 향상 (Improvement in Long-term Stability of Pd Alloy Hydrogen Separation Membranes)

  • 김창현;이준형;조성태;김동원
    • 한국표면공학회지
    • /
    • 제48권1호
    • /
    • pp.11-22
    • /
    • 2015
  • Pd alloy hydrogen membranes for hydrogen purification and separation need thermal stability at high temperature for commercial applications. Intermetallic diffusion between the Pd alloy film and the porous metal support gives rise to serious problems in long-term stability of Pd alloy membranes. Ceramic barriers are widely used to prevent the intermetallic diffusion from the porous metal support. However, these layers result in poor adhesion at the interface between film and barrier because of the fundamentally poor chemical affinity and a large thermal stress. In this study, we developed Pd alloy membranes having a dense microstructure and saturated composition on modified metal supports by advanced DC magnetron sputtering and heat treatment for enhanced thermal stability. Experimental results showed that Pd-Cu and Pd-Ag alloy membranes had considerably enhanced long-term stability owing to stable, dense alloy film microstructure and saturated composition, effective diffusion barrier, and good adhesive interface layer.

Kinetics 수정에 의한 실리사이드의 열적 안정성 향상에 대한 연구 (Thermal stability enhancement of silicide by kinetic modifications)

  • 남형진
    • 한국산학기술학회논문지
    • /
    • 제8권5호
    • /
    • pp.1042-1046
    • /
    • 2007
  • 본 연구에서는 제 3의 화학 원소 첨가에 의한 코발트 실리사이드와 니켈 실리사이드의 열적 안정성 향상 메카니즘을 조사하였다. 즉, Co-Si 시스템에 텅스텐을 첨가하는 경우 CoSi의 heat of formation이 증가하는 것으로 관찰되었다. 이러한 증가는 시스템 에너지 감속 속도의 최대화로 대변되는 실리사이드 형성 kinetics가 선호하는 glass의 형성을 억제하는 것으로 밝혀졌다. 이 경우 CoSi와 실리콘 기판 사이의 계면에 형성되는 다결정 구조는 glass의 self-diffusion보다 확산계수가 훨씬 작아 상 변이를 위해서는 보다 높은 열에너지를 요구하게 되어 궁극적으로 CoSi의 열적 안정성이 향상되는 것을 알 수 있었다.

  • PDF

Temperature-dependent studies on catalytic hydrosilation of polyalkylsiloxane using NMR

  • Sul, Hyewon;Lee, Tae Hee;Lim, Eunsoo;Rho, Yecheol;Kim, Chong-Hyeak;Kim, Jeongkwon
    • 분석과학
    • /
    • 제30권4호
    • /
    • pp.213-219
    • /
    • 2017
  • Polyalkylsiloxane has been spotlighted in pressure-sensitive adhesive (PSA) application due to excellent physical properties and good biocompatibility. Thermal behaviour of polyalkylsiloxane mixtures, such as thermal stability and heat flow, were studied using TG-DTA during catalytic hydrosilation. To understand reaction kinetics of cross-linking, catalytic hydrosilation of polyalkylsiloxane was monitored using variable temperature nuclear magnetic resonance (VT-NMR) as increased temperature. The formation of cross-linking bond $Si-CH_2-CH_2-Si$ was directly observed using distortionless enhanced by polarization transfer (DEPT) technique. Successfully polyalkylsiloxane PSA samples exhibited excellent adhesion properties by cross-linking reaction.

Effect of Cobalt Loading on the Performance and Stability of Oxygen Reduction and Evolution Reactions in Rechargeable Zinc-air Batteries

  • Sheraz Ahmed;Joongpyo Shim;Gyungse Park
    • 대한화학회지
    • /
    • 제68권2호
    • /
    • pp.87-92
    • /
    • 2024
  • The commercialization of rechargeable metal-air batteries is extremely desirable but designing stable oxygen reduction reaction (ORR) catalysts with non-noble metal still has faced challenges to replace platinum-based catalysts. The nonnoble metal catalysts for ORR were prepared to improve the catalytic performance and stability by the thermal decomposition of ZIF-8 with optimum cobalt loading. The porous carbon was obtained by the calcination of ZIF-8 and different loading amounts of Co nanoparticles were anchored onto porous carbon forming a Co/PC catalyst. Co/PC composite shows a significant increase in the ORR value of current and stability (500 h) due to the good electronic conductive PCN support and optimum cobalt metal loading. The significantly improved catalytic performance is ascribed to the chemical structure, synergistic effects, porous carbon networks, and rich active sites. This method develops a new pathway for a highly active and advantageous catalyst for electrochemical devices.

In-situ 중합법에 의한 기상성장 탄소나노섬유/폴리이미드 복합재료의 제조 및 물성 (Preparation and Characterization of Vapor-Grown Carbon Nanofibers-Reinforced Polyimide Composites by in-situ Polymerization)

  • 박수진;이은정;이재락;원호연;문두경
    • 폴리머
    • /
    • 제31권2호
    • /
    • pp.117-122
    • /
    • 2007
  • 본 연구에서는 제자리 중합에 의해 합성된 기상성장 탄소나노섬유/폴리이미드(VGCNFs/PI) 복합재료 필름의 기계적, 전기적 특성과 열안정성을 만능재료 시험기와 체적저항기, 열중량분석기를 통해 관찰하였다. 그 결과, VGCNFs 일정량 첨가되었을 때 복합재료 필름의 인장강도가 증가한 것을 관찰할 수 있었다. VGCNFs/PI 복합재료 필름의 체적저항 값은 VGCNFs 첨가량이 증가할수록 감소하였으며, 전기적 percolation threshold는 VGCNFs 함량 1과 3 wt% 형성되었는데, 이는 복합재료 내부에서 VGCNFs 상호간 네트워크의 형성으로 인하여 전기적 경로가 만들어졌기 때문이라 판단된다. VGCNFs가 PI 복합재료 필름의 열안정성은 순수한 이미드 필름보다 VGCNFs가 첨가됨에 따라 향상되었으며, 이는 충전제로 사용한 VGCNFs가 PI 수지에 잘 분간됨에 따라 복합재료의 가교화에 영향을 주어 VGCNFs/PI 복합재료 필름의 열안정성이 향상된 것으로 판단된다.

Methacryloxypropyltrimethoxysilane(MAPTMS)의 광그라프트에 의한 PET직물의 열적 안정성 향상 (Improved Thermal Stability of PET Fabrics by Photografting of Methacryloxypropyltrimethoxysilane(MAPTMS))

  • 장진호;손정아
    • 한국염색가공학회지
    • /
    • 제20권4호
    • /
    • pp.1-7
    • /
    • 2008
  • Methacryloxypropyl trimethoxysilane (MAPTMS), a hybrid organic-inorganic monomer, was photografted onto PET fabric using benzophenone (BP) as a photoinitiator. It was found that a UV energy of 43.2J/$cm^2$ was required to optimally photograft the MAPTMS onto PET fabrics which was applied with an aqueous formulation of 10% MAPTMS, 20% BP and 0.5% N-Methyldiethanol amine (MDEA). The MDEA additive was efficient in reducing atmospheric oxygen inhibition of polymer radicals which eliminated compulsory nitrogen inerting. The surface grafting of PET fabrics was verified by fourier transform infrared spectroscopy (FT-IR) and scanning electron spectroscopy (SEM). The grafted PET fabrics with the hybrid monomer showed higher thermal stability due to the introduced silane component in the monomer as ascertained by higher char content at 800$^{\circ}C$, which increased to 14.5% for the 15.8% grafting compared to 8.2% for the untreated.

Cross-linkable Polymer Matrix for Enhanced Thermal Stability of Succinonitrile-based Polymer Electrolyte in Lithium Rechargeable Batteries

  • Ryou, Myung-Hyun;Lee, Dong-Jin;Lee, Je-Nam;Lee, Hong-Kyeong;Seo, Myung-Won;Lee, Hye-Won;Shin, Weon-Ho;Lee, Yong-Min;Choi, Jang-Wook;Park, Jung-Ki
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권4호
    • /
    • pp.198-203
    • /
    • 2011
  • A polymer electrolyte was prepared by using polyvinylidenefluoride-co-hexafluoropropylene (PVdF-HFP) or poly(ethylene glycol) dimethacrylate (PEGDMA) as polymer matrices, succinonitrile as an additive, and lithium perchlorate as a lithium salt. Compared to the polymer electrolyte employing PVdF-HFP, the PEGDMA-based polymer electrolyte exhibits substantially superior thermal stability when exposed to high temperatures. Nonetheless, the ionic conductivity of the PEGDMA-based polymer electrolyte was preserved in a wide temperature range between $-20^{\circ}C$ and $80^{\circ}C$.

적외선 렌즈용 Ge-Sb-Se계 칼코게나이드의 유리안정성 평가 (Glass Forming Stability in Chalcogenide-based GeSbSe Materials for IR-Lens)

  • 정건홍;공헌;여종빈;이현용
    • 한국전기전자재료학회논문지
    • /
    • 제30권4호
    • /
    • pp.204-209
    • /
    • 2017
  • Thermal and structural stability in the glass transition region of chalcogenide glasses has been investigated in terms of thermodynamics for application to various optoelectronic devices. In this study, the compositions of $Ge_xSb_{20}Se_{80-x}$ (x = 10, 15, 20, 25, and 30) were selected to investigate the glass stability according to germanium ratios. The chalcogenide bulks were fabricated by using a traditional melt-quenching method. Thin films were deposited by a thermal evaporation system, maintaining the deposition ratio of $3{\sim}5{\AA}$ in order to have uniformity. The thermal and structural properties were measured by a differential scanning calorimeter (DSC) and X-ray diffraction (XRD). The DSC analysis provided thermal parameters and theoretical glass region stabilities. The XRD analysis supported the theoretical stabilities because of where the crystallization peak data occurred.

3-${\omega}$ 방법을 이용한 다중벽 탄소나노튜브 나노유체의 침전 안정성 및 열전도계수 측정에 관한 실험적 연구 (Stabilization and thermal conductivity measurement of MWCNT nanofluids by using the $3-{\omega}$ method)

  • 오동욱;이준식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2171-2176
    • /
    • 2007
  • The 3-omega (3-${\omega}$) method is utilized to measure the thermal conductivity of nanofluids. A metal line heater on a silicon nitride membrane bridge structure is microfabricated by a bulk silicon etching method. Localized measurement of the thermal conductivity within the nanofluids droplet is possible by the fabricated 3-${\omega}$ sensor. Time varying AC temperature amplitudes and thermal conductivities are measured to check the stability of the nanofluids containing multi-wall carbon nanotubes (MWCNTs). Stabilities of MWCNT nanofluids prepared with different chemical treatments are compared. Acid treated MWCNT showed best dispersion stability in water while MWCNTs dispersed in water with surfactants such as Gum Arabic and Sodium dodecyl benzene sulfate showed clear sign of gravity dependence.

  • PDF

Synthesis of Alumina-Grafted Manganese Oxide Particles Using Surfactants through Coprecipitation Method and Their Thermal Properties

  • Kwon, Boseong;Park, Jun-Hwan;Jang, Seong-Cheol;Oh, Seong-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3559-3564
    • /
    • 2013
  • Alumina particles were grafted onto the surface of manganese oxide particles via the coprecipitation process using surfactant and cosurfactant. The phase of Mn/Al salts (Phase I) and the phase of precipitation agent (Phase II) were prepared in aqueous surfactant solution, separately. Phase II was added into Phase I and the reaction was performed to form the precursors of composites through hydrogen bonding between $Mn(OH)_2$ and $Al(OH)_3$ prepared by the reaction of Mn/Al salts with the precipitation agent. The alumina-grafted manganese oxide particles were obtained as a final product after calcination. The concentrations of Al salt and surfactant were varied to investigate their effects on the formation and the crystallinity of composites. In addition, the crystal structure of products could be controlled by changing the calcination temperature. Through thermal analyses, it was found that the thermal stability of manganese oxide was improved by the introduction of alumina on its surface.