DOI QR코드

DOI QR Code

Glass Forming Stability in Chalcogenide-based GeSbSe Materials for IR-Lens

적외선 렌즈용 Ge-Sb-Se계 칼코게나이드의 유리안정성 평가

  • Jung, Gun-Hong (Department of Advanced Chemicals and Engineering, Chonnam National University) ;
  • Kong, Heon (Department of Advanced Chemicals and Engineering, Chonnam National University) ;
  • Yeo, Jong-Bin (The Research Institute of Catalysis, Chonnam National University) ;
  • Lee, Hyun-Yong (School of Chemical Engineering, Chonnam National University)
  • 정건홍 (전남대학교 신화학소재공학과) ;
  • 공헌 (전남대학교 신화학소재공학과) ;
  • 여종빈 (전남대학교 촉매연구소) ;
  • 이현용 (전남대학교 화학공학부)
  • Received : 2016.11.04
  • Accepted : 2017.02.15
  • Published : 2017.04.01

Abstract

Thermal and structural stability in the glass transition region of chalcogenide glasses has been investigated in terms of thermodynamics for application to various optoelectronic devices. In this study, the compositions of $Ge_xSb_{20}Se_{80-x}$ (x = 10, 15, 20, 25, and 30) were selected to investigate the glass stability according to germanium ratios. The chalcogenide bulks were fabricated by using a traditional melt-quenching method. Thin films were deposited by a thermal evaporation system, maintaining the deposition ratio of $3{\sim}5{\AA}$ in order to have uniformity. The thermal and structural properties were measured by a differential scanning calorimeter (DSC) and X-ray diffraction (XRD). The DSC analysis provided thermal parameters and theoretical glass region stabilities. The XRD analysis supported the theoretical stabilities because of where the crystallization peak data occurred.

Keywords

References

  1. K. B. Song, S. S. Lee, M. A. Cheong, and S. W. Sohn, Electron. Telecommun. Trends, 23, 89 (2008).
  2. D. H. Cha, H. J. Kim, H. S. Park, Y. Hwang, J. H. Kim, J. H. Hong, and K. S. Lee, Appl. Opt., 49, 1609 (2010).
  3. D. H. Cha, J. H. Kim, and H. J. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 27, 91 (2014).
  4. D. S. Bae, J. B. Yeo, and H. Y. Lee, J. Korean Phys. Soc., 68, 1610 (2013). [DOI: https://doi.org/10.3938/jkps.62.1610]
  5. H. S. Park, D. H. Cha, H. J. Kim, J. H. Kim, and H. Y. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 22, 204 (2009).
  6. M. Lasocka, Mater. Sci. Eng., 23, 173 (1976). [DOI: https://doi.org/10.1016/0025-5416(76)90189-0]
  7. H. E. Kissinger, Anal. Chem., 29, 1702 (1957). [DOI: https://doi.org/10.1021/ac60131a045]
  8. J. A. Augis and J. E. Bennett, J. Therm. Anal., 13, 283 (1978). [DOI: https://doi.org/10.1007/BF01912301]
  9. S. Sharda, N. Sharma, P. Sharma, and V. Sharma, J. Therm. Anal. Calorim., 115, 361 (2014). [DOI: https://doi.org/10.1007/s10973-013-3200-6]
  10. N. Tanwar and V. K. Saraswat, J. Non-Cryst. Solids, 394, 1 (2014). [DOI: https://doi.org/10.1016/j.jnoncrysol.2014.03.029]
  11. A. A. Al-Ghamdi, M. A. Alvi, and S. A. Khan, J. Alloy Compd., 509, 2087 (2011). [DOI: https://doi.org/10.1016/j.jallcom.2010.10.145]
  12. M. Muiva, T. Stephan, and M. Julius, J. Non-Cryst. Solids, 357, 3726 (2011). [DOI: http://dx.doi.org/10.1016/j.jnoncrysol.2011.07.033]
  13. K. Tanaka, Phys. Rev. B, 39, 1270 (1989). [DOI: https://doi.org/10.1103/PhysRevB.39.1270]
  14. A. K. Varshneya and D. J. Mauro, J. Non-Cryst. Solids, 353, 1291 (2007). [DOI: https://doi.org/10.1016/j.jnoncrysol.2006.10.072]