• Title/Summary/Keyword: therapeutic potential

Search Result 2,195, Processing Time 0.029 seconds

Proteomic Analysis of Gastric Cancer Patient Sera

  • Kim, Jung-Sun;Kim, Se-Yeon;Park, Un-Sup;Jung, Sung-Yun;Kim, Dae-Kyong
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.291.3-292
    • /
    • 2002
  • Cancer is multifaceted disease that presents many challenges to clinicians and cancer researchers searching for more effective ways to combat its often devastating effects. Among the central challenges of this disease, are the identification of markers for improved diagnosis and classification of tumors, and the definition of targets for more effective therapeutic measures. The objective of this study is to identify potential biomarkers for the early detection of gastric cancer in serum. (omitted)

  • PDF

Coptidis Rhizoma Extract induces Apoptotic Cell Death in YD-10B Cell (황련(黃連)이 구강암 세포에서의 세포자멸사에 미치는 영향)

  • Lee, Jae-Geun;Park, Sook-Jahr;Kim, Sang-Chan;Jee, Seon-Young
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.22 no.2
    • /
    • pp.50-59
    • /
    • 2009
  • Objectives : The aim of this study was conducted that CRE (Coptidis Rhizoma Extract) induces apoptosis in YD-10B cells, human oral squamous carcinoma cell line. Methods : In this study, YD-10B cells were exposed to CRE (0.03-0.30 mg/ml), for 6-24 hours. We measured the effects of CRE on the changes of cell viability and cell membrane, TUNEL assay of CRE-treated YD-10B cell. Results : In this study, CRE caused a decrease of viability in YD-10B cells, human oral squamous carcinoma cell line. When YD-10B cells were treated with CRE, cells showed dose-dependent manner apoptotic cell death. Conclusions : These results suggest that CRE may be potential therapeutic approach in the clinical management of oral squamous cell carcinoma.

  • PDF

Rapamycin Inhibits Rabbit Corneal Neovascularization Induced by Angiogenin (Rapamycin의 angiogenin 유도성 가토 각막의 혈관신생 억제)

  • 권영삼;김재찬;장광호
    • Journal of Veterinary Clinics
    • /
    • v.21 no.3
    • /
    • pp.309-313
    • /
    • 2004
  • The purpose of this study was to determine whether immunosuppresant, rapamycin could inhibit corneal angiogenesis induced by angiogenin and to evalutate the its role by micropocket assay. The rabbit's eye was implanted intrastromally into the superior cornea with pellet for the control group, pellet containing of angiogenin for the angiogenin group, and pellet containing of angiogenin and rapamycin for the rapamycin group. We could observed that the angiogen induced corneal angiogenesis was inhibited by rapamycin. The score of neovascularization was significantly decreased in the rapamycin group than in the angiogenin group at 7 and 10 days after pellet implantation (p < 0.05). Histologically, the cornea treated with rapamycin group also showed much less new vessels than the cornea treated with angiogenin. In conclusion, rapamycin appears to inhibit angiogenin induced angiogenesis in a rabbit corneal micropocket assay and may have therapeutic potential as an antiangiogenic agent.

Update on the Evidence Regarding Maintenance Therapy

  • Lee, Jeong Eun;Chung, Chae-Uk
    • Tuberculosis and Respiratory Diseases
    • /
    • v.76 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Maintenance therapy has emerged as a novel therapeutic paradigm for advanced non-small-cell lung cancer (NSCLC). Maintenance therapy that aims to sustain a clinically favorable state after first-line chemotherapy has two strategies. Switch maintenance therapy entails switching to a new and non-cross-resistant agent in an alternating or sequential manner, on completion of first-line chemotherapy. Continuous maintenance therapy keeps ongoing administration of a component of the current regimen after four to six cycles of chemotherapy, if there is a stable disease, or better response. Both maintenance therapies can be continued, until disease progression. The potential evidence regarding maintenance therapy includes providing the opportunity to receive additional treatment, through sustaining tumor shrinkage, and delayed emergence of tumor-related symptom. Thus far, debates over the parameters used to predict the effectiveness of maintenance therapy, financial burden, and uncertainty of improving the quality of life exist. Despite many debates, maintenance therapy, which is currently recommended, has been disclosed to be beneficial.

Effect of Polyopes lancifolia Extract on Oxidative Stress in Human Umbilical Vein Endothelial Cells Induced by High Glucose

  • Min, Seong Won;Han, Ji Sook
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.1
    • /
    • pp.38-44
    • /
    • 2013
  • The protective effect of Polyopes lancifolia extract on high glucose-induced oxidative stress was investigated using human umbilical vein endothelial cells (HUVECs). High concentration of glucose (30 mM) treatment induced HUVECs cell death, but Polyopes lancifolia extract, at concentrations of 25, 50, and $100{\mu}g/mL$, protected cells from high glucose-induced damage. Furthermore, thiobarbituric acid reactive substances, intracellular reactive oxygen species, and nitric oxide levels increased by high glucose treatment were effectively decreased by treatment with Polyopes lancifolia extract in a dose-dependent manner. Also, Polyopes lancifolia extract treatment reduced the overexpressions of inducible nitric oxide synthase, cyclooxygenase-2, and nuclear factor-kappa B proteins activation that was induced by high glucose in HUVECs. These results indicate that Polyopes lancifolia extract is a potential therapeutic material that will reduce the damage caused by high glucose-induced-oxidative stress associated with diabetes.

Flavonoids as anti-inflammatory and neuroprotective agents

  • Lee, Heesu;Selvaraj, Baskar;Yoo, Ki Yeon;Ko, Seong-Hee
    • International Journal of Oral Biology
    • /
    • v.45 no.2
    • /
    • pp.33-41
    • /
    • 2020
  • Neuroinflammation is known as the main mechanism implicated in the advancement of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. The main feature of neuroinflammation is associated with the activation of microglia. The activated microglia increase proinflammatory cytokine production and induce progressive neuronal cell death. Citrus flavonoids show neuroprotective effects that are associated with the anti-inflammatory action of flavonoids in neurodegenerative diseases. Among these citrus flavonoids, kaempferol, naringin, and nobiletin show inhibitory effects on nuclear factor-κB and mitogen-activated protein kinase signaling pathways that can modulate inflammatory conditions in microglial cells. In the present review, we present the anti-inflammatory activities of citrus flavonoids and therapeutic potential of flavonoids as neuroprotective agents.

Apoptotic Cell Death Following Traumatic Injury to the Central Nervous System

  • Springer, Joe E.
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.94-105
    • /
    • 2002
  • Apoptotic cell death is a fundamental and highly regulated biological process in which a cell is instructed to actively participate in its own demise. This process of cellular suicide is activated by developmental and environmental cues and normally plays an essential role in eliminating superfluous, damaged, and senescent cells of many tissue types. In recent years, a number of experimental studies have provided evidence of widespread neuronal and glial apoptosis following injury to the central nervous system (CNS). These studies indicate that injury-induced apoptosis can be detected from hours to days following injury and may contribute to neurological dysfunction. Given these findings, understanding the biochemical signaling events controlling apoptosis is a first step towards developing therapeutic agents that target this cell death process. This review will focus on molecular cell death pathways that are responsible for generating the apoptotic phenotype. It will also summarize what is currently known about the apoptotic signals that are activated in the injured CNS, and what potential strategies might be pursued to reduce this cell death process as a means to promote functional recovery.

Effects of Transcranial Magnetic Stimulation on Cognitive Function (경두개 자기 자극이 인지 기능에 미치는 영향)

  • Lee, Sang Min;Chae, Jeong-Ho
    • Korean Journal of Biological Psychiatry
    • /
    • v.23 no.3
    • /
    • pp.89-101
    • /
    • 2016
  • Transcranial magnetic stimulation (TMS) is a safe, noninvasive and useful technique for exploring brain function. Especially, for the study of cognition, the technique can modulate a cognitive performance if the targeted area is engaged, because TMS has an effect on cortical network. The effect of TMS can vary depending on the frequency, intensity, and timing of stimulation. In this paper, we review the studies with TMS targeting various regions for evaluation of cognitive function. Cognitive functions, such as attention, working memory, semantic decision, discrimination and social cognition can be improved or deteriorated according to TMS stimulation protocols. Furthermore, potential therapeutic applications of TMS, including therapy in a variety of illness and research into cortical localization, are discussed.

Emerging roles of 14-3-3γ in the brain disorder

  • Cho, Eunsil;Park, Jae-Yong
    • BMB Reports
    • /
    • v.53 no.10
    • /
    • pp.500-511
    • /
    • 2020
  • 14-3-3 proteins are mostly expressed in the brain and are closely involved in numerous brain functions and various brain disorders. Among the isotypes of the 14-3-3 proteins, 14-3-3γ is mainly expressed in neurons and is highly produced during brain development, which could indicate that it has a significance in neural development. Furthermore, the distinctive levels of temporally and locally regulated 14-3-3γ expression in various brain disorders suggest that it could play a substantial role in brain plasticity of the diseased states. In this review, we introduce the various brain disorders reported to be involved with 14-3-3γ, and summarize the changes of 14-3-3γ expression in each brain disease. We also discuss the potential of 14-3-3γ for treatment and the importance of research on specific 14-3-3 isotypes for an effective therapeutic approach.

The Ameliorative Effect of Adenophorae Radix on Atopic Dermatitis in vivo and in vitro

  • Jung, Ji-Wook;Kim, Su-Jin
    • Biomedical Science Letters
    • /
    • v.20 no.3
    • /
    • pp.117-123
    • /
    • 2014
  • Adenophorae Radix (AR) has been used as a traditional medicine for various diseases. However, the regulatory effects of AR in atopic dermatitis are not yet understood. This study attempted to determine the pharmacological effects of AR and its constituent on both compound 48/80 or histamine-induced scratching behaviors and 2, 4-dinitrochlrobenzene (DNCB)-induced atopic dermatitis in mice. The findings of this study demonstrated that AR reduced compound 48/80 or histamine-induced scratching behaviors in mice. Treatment of AR attenuated the AD symptoms such as eczematous, erythema and dryness and serum IgE and IL-6 levels in AD model. Additionally, AR inhibited the TNF-${\alpha}$-induced the Nuclear factor-${\kappa}B$ activation in HaCaT cells. Collectively, the findings of this study provide us with novel insights into the pharmacological actions of AR as a potential molecule for therapeutic agent against atopic dermatitis.