• Title/Summary/Keyword: therapeutic angiogenesis

Search Result 143, Processing Time 0.034 seconds

Inhibition of Lymphatic Endothelial Growth Factor Receptor in a Murine Model of Oral Squamous Cell Carcinoma (구강 편평상피세포암 마우스 모델에서 림프관내피 성장인자 수용체의 억제)

  • Kye, Jun-Young;Park, Young-Wook
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • Purpose: Tumor associated angiogenesis and/or lymphangiogenesis are known to be linked by VEGFR signaling pathways. These processes are regulated by several growth factors including VEGFR-2, VEGFR-3. E7080 is an orally active inhibitor of multiple tyrosine kinases including VEGFR-2, 3. Therefore, it was proposed that E7080 may inhibit angiogenesis and lymphangiogenesis. The aim of this study was to determine the effect of E7080 in a nude mouse model of OSCC. Methods: KB cells were xenografted into the submucosal tissue of the mouth floor of athymic mice. Seven days after the xenograft, the mice were randomized into 2 groups. E7080 were administered orally to the experimental group once per day. The mice were sacrificed 3 weeks after the treatment. The tumors were examined histopathologically. Immunohistochemical assays with anti- VEGF-C, VEGFR-2, VEGFR-3, phosphorylated VEGFR-2/3 (pVEGFR-2/3), and D2-40 antibodies were then performed. Results: The transplantation of human OSCC tumor cells into the mouth floor resulted in the formation of orthotopic tumors. The experimental (E7080 treatment) group showed a slowly increased tumor volume. Moreover, immunohistochemical staining demonstrated higher levels of VEGF-C, VEGFR-2, VEGFR-3, pVEGFR-2/3 and D2-40 expression in the control group than in the experimental group. Conclusion: These results suggest that E7080 may provide therapeutic benefits in OSCC.

Enhancement of Angiogenesis by Sophorae Radix in Full-thickness Skin Wound of Rats (흰쥐의 피부상처 동물모델에서 고삼(苦蔘)이 신생혈관형성에 미치는 영향)

  • Kim, Bum Hoi;Kang, Kyung-Hwa
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.6
    • /
    • pp.334-340
    • /
    • 2017
  • Wound healing is the restoration in injured skin tissue and one of the most important therapeutic targets. The process consists of inflammation, proliferation, and remodeling. There have been reported multiple factors that accelerate and delay wound healing. In this study we tested the hypothesis that Sophorae Radix extract would improve the recovery of wound healing after full-thickness skin wound in rats. Twenty young male Sprague-Dawley rats were used for the studies. A full-thickness skin wound was made on the dorsal skin of the rats. Either Sophorae Radix water extract (SR) or saline (Control) was orally administrated every day. The wound area was measured and the percentages of wound contraction, wound healed and wound epithelization were evaluated. After 15 days, the skin tissues were excised and examined by histopathological and immunohistochemistrical method. In results, wound area in SR group was significantly decreased to compared with Control. SR group showed the significant enhancements in the percentages of wound contraction, wound healed and wound epithelization. Histopathological examination revealed that SR induces neo-vascularization potential in wound healing process. SR treatment in rats significantly accelerated cutaneous wound healing in the angiogenesis process by increasing VEGF and TGF-${\beta}1$ synthesis. These results suggest that Sophorae Radix enhance skin wound repair by increasing the angiogenic agents such as VEGF and TGF-${\beta}1$.

Effect of Ghrelin on Memory Impairment in a Rat Model of Vascular Dementia (그렐린이 혈관성 치매 쥐의 기억 손상에 미치는 효과)

  • Park, Jong-Min;Kim, Youn-Jung
    • Journal of Korean Academy of Nursing
    • /
    • v.49 no.3
    • /
    • pp.317-328
    • /
    • 2019
  • Purpose: The purpose of this study was to identify the effect of ghrelin on memory impairment in a rat model of vascular dementia induced by chronic cerebral hypoperfusion. Methods: Randomized controlled groups and the posttest design were used. We established the representative animal model of vascular dementia caused by bilateral common carotid artery occlusion and administered $80{\mu}g/kg$ ghrelin intraperitoneally for 4 weeks. First, behavioral studies were performed to evaluate spatial memory. Second, we used molecular biology techniques to determine whether ghrelin ameliorates the damage to the structure and function of the white matter and hippocampus, which are crucial to learning and memory. Results: Ghrelin improved the spatial memory impairment in the Y-maze and Morris water maze test. In the white matter, demyelination and atrophy of the corpus callosum were significantly decreased in the ghrelin-treated group. In the hippocampus, ghrelin increased the length of hippocampal microvessels and reduced the microvessels pathology. Further, we confirmed angiogenesis enhancement through the fact that ghrelin treatment increased vascular endothelial growth factor (VEGF)-related protein levels, which are the most powerful mediators of angiogenesis in the hippocampus. Conclusion: We found that ghrelin affected the damaged myelin sheaths and microvessels by increasing angiogenesis, which then led to neuroprotection and improved memory function. We suggest that further studies continue to accumulate evidence of the effect of ghrelin. Further, we believe that the development of therapeutic interventions that increase ghrelin may contribute to memory improvement in patients with vascular dementia.

Low-dose metronomic doxorubicin inhibits mobilization and differentiation of endothelial progenitor cells through REDD1-mediated VEGFR-2 downregulation

  • Park, Minsik;Kim, Ji Yoon;Kim, Joohwan;Lee, Jeong-Hyung;Kwon, Young-Guen;Kim, Young-Myeong
    • BMB Reports
    • /
    • v.54 no.9
    • /
    • pp.470-475
    • /
    • 2021
  • Low-dose metronomic chemotherapy has been introduced as a less toxic and effective strategy to inhibit tumor angiogenesis, but its anti-angiogenic mechanism on endothelial progenitor cells (EPCs) has not been fully elucidated. Here, we investigated the functional role of regulated in development and DNA damage response 1 (REDD1), an endogenous inhibitor of mTORC1, in low-dose doxorubicin (DOX)-mediated dysregulation of EPC functions. DOX treatment induced REDD1 expression in bone marrow mononuclear cells (BMMNCs) and subsequently reduced mTORC1-dependent translation of endothelial growth factor (VEGF) receptor (Vegfr)-2 mRNA, but not that of the mRNA transcripts for Vegfr-1, epidermal growth factor receptor, and insulin-like growth factor-1 receptor. This selective event was a risk factor for the inhibition of BMMNC differentiation into EPCs and their angiogenic responses to VEGF-A, but was not observed in Redd1-deficient BMMNCs. Low-dose metronomic DOX treatment reduced the mobilization of circulating EPCs in B16 melanoma-bearing wild-type but not Redd1-deficient mice. However, REDD1 overexpression inhibited the differentiation and mobilization of EPCs in both wild-type and Redd1-deficient mice. These data suggest that REDD1 is crucial for metronomic DOX-mediated EPC dysfunction through the translational repression of Vegfr-2 transcript, providing REDD1 as a potential therapeutic target for the inhibition of tumor angiogenesis and tumor progression.

Cytokines, Vascular Endothelial Growth Factors, and PlGF in Autoimmunity: Insights From Rheumatoid Arthritis to Multiple Sclerosis

  • Young eun Lee;Seung-Hyo Lee;Wan-Uk Kim
    • IMMUNE NETWORK
    • /
    • v.24 no.1
    • /
    • pp.10.1-10.17
    • /
    • 2024
  • In this review, we will explore the intricate roles of cytokines and vascular endothelial growth factors in autoimmune diseases (ADs), with a particular focus on rheumatoid arthritis (RA) and multiple sclerosis (MS). AD is characterized by self-destructive immune responses due to auto-reactive T lymphocytes and Abs. Among various types of ADs, RA and MS possess inflammation as a central role but in different sites of the patients. Other common aspects among these two ADs are their chronicity and relapsing-remitting symptoms requiring continuous management. First factor inducing these ADs are cytokines, such as IL-6, TNF-α, and IL-17, which play significant roles in the pathogenesis by contributing to inflammation, immune cell activation, and tissue damage. Secondly, vascular endothelial growth factors, including VEGF and angiopoietins, are crucial in promoting angiogenesis and inflammation in these two ADs. Finally, placental growth factor (PlGF), an emerging factor with bi-directional roles in angiogenesis and T cell differentiation, as we introduce as an "angio-lymphokine" is another key factor in ADs. Thus, while angiogenesis recruits more inflammatory cells into the peripheral sites, cytokines secreted by effector cells play critical roles in the pathogenesis of ADs. Various therapeutic interventions targeting these soluble molecules have shown promise in managing autoimmune pathogenic conditions. However, delicate interplay between cytokines, angiogenic factors, and PlGF has more to be studied when considering their complementary role in actual pathogenic conditions. Understanding the complex interactions among these factors provides valuable insights for the development of innovative therapies for RA and MS, offering hope for improved patient outcomes.

Inhibition of tumor growth and angiogenesis of tamoxifen-resistant breast cancer cells by ruxolitinib, a selective JAK2 inhibitor

  • Ji Won Kim;Jaya Gautam;Ji Eun Kim;Jung‑Ae Kim;Keon Wook Kang
    • Oncology Letters
    • /
    • v.17 no.4
    • /
    • pp.3981-3989
    • /
    • 2019
  • Tamoxifen (TAM) is the most widely used treatment for estrogen receptor-positive breast cancer patients. Unfortunately, the majority of these patients exhibit TAM resistance following treatment. We previously reported that proliferation and migration were greater in TAM-resistant MCF-7 (TAMR-MCF-7) cells than in parental MCF-7 cells. Janus kinases (JAKs) are cytosolic tyrosine kinases that transduce signals from plasma membrane cytokines and growth factor receptors. JAK2 selectively phosphorylates signal transducer and activator of transcription (STAT)-3, and the JAK2-STAT3 signaling pathway is known as a crucial signaling pathway for the regulation of cancer progression and metastasis. In the present study, basal phosphorylation of STAT3 was revealed to be greater in TAMR-MCF-7 cells than in control MCF-7 cells. Ruxolitinib, a potent JAK2 inhibitor, was demonstrated to attenuate STAT3 phosphorylation and the proliferation of TAMR-MCF-7 cells. Ruxolitinib also suppressed the enhanced cell migration of TAMR-MCF-7 cells through the inhibition of epithelial mesenchymal transition. Vascular endothelial growth factor (VEGF), a representative target gene of the JAK2-STAT3 pathway, functions as a key regulator of invasion and angiogenesis. Ruxolitinib significantly inhibited VEGF mRNA expression and transcriptional activity. The present study also performed a chick embryo chorioallantoic membrane assay to assess tumor growth and angiogenesis in TAMR-MCF-7 cells. Ruxolitinib reduced tumor weight and the number of blood vessels produced by TAMR-MCF-7 cells in a concentration-dependent manner. These results indicated that JAK2 could be a new therapeutic target for TAM-resistant breast cancer.

KCl Mediates $K^+$ Channel-Activated Mitogen-Activated Protein Kinases Signaling in Wound Healing

  • Shim, Jung Hee;Lim, Jong Woo;Kim, Byeong Kyu;Park, Soo Jin;Kim, Suk Wha;Choi, Tae Hyun
    • Archives of Plastic Surgery
    • /
    • v.42 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • Background Wound healing is an interaction of a complex signaling cascade of cellular events, including inflammation, proliferation, and maturation. $K^+$ channels modulate the mitogen-activated protein kinase (MAPK) signaling pathway. Here, we investigated whether $K^+$ channel-activated MAPK signaling directs collagen synthesis and angiogenesis in wound healing. Methods The human skin fibroblast HS27 cell line was used to examine cell viability and collagen synthesis after potassium chloride (KCl) treatment by Cell Counting Kit-8 (CCK-8) and western blotting. To investigate whether $K^+$ ion channels function upstream of MAPK signaling, thus affecting collagen synthesis and angiogenesis, we examined alteration of MAPK expression after treatment with KCl (channel inhibitor), NS1619 (channel activator), or kinase inhibitors. To research the effect of KCl on angiogenesis, angiogenesis-related proteins such as thrombospondin 1 (TSP1), anti-angiogenic factor, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), pro-angiogenic factor were assayed by western blot. Results The viability of HS27 cells was not affected by 25 mM KCl. Collagen synthesis increased dependent on time and concentration of KCl exposure. The phosphorylations of MAPK proteins such as extracellular-signal-regulated kinase (ERK) and p38 increased about 2.5-3 fold in the KCl treatment cells and were inhibited by treatment of NS1619. TSP1 expression increased by 100%, bFGF expression decreased by 40%, and there is no significant differences in the VEGF level by KCl treatment, TSP1 was inhibited by NS1619 or kinase inhibitors. Conclusions Our results suggest that KCl may function as a therapeutic agent for wound healing in the skin through MAPK signaling mediated by the $K^+$ ion channel.

Angiogenesis in newly regenerated bone by secretomes of human mesenchymal stem cells

  • Katagiri, Wataru;Kawai, Takamasa;Osugi, Masashi;Sugimura-Wakayama, Yukiko;Sakaguchi, Kohei;Kojima, Taku;Kobayashi, Tadaharu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.39
    • /
    • pp.8.1-8.8
    • /
    • 2017
  • Background: For an effective bone graft for reconstruction of the maxillofacial region, an adequate vascular network will be required to supply blood, osteoprogenitor cells, and growth factors. We previously reported that the secretomes of bone marrow-derived mesenchymal stem cells (MSC-CM) contain numerous growth factors such as insulin-like growth factor (IGF)-1, transforming growth factor $(TGF)-{\beta}1$, and vascular endothelial growth factor (VEGF), which can affect the cellular characteristics and behavior of regenerating bone cells. We hypothesized that angiogenesis is an important step for bone regeneration, and VEGF is one of the crucial factors in MSC-CM that would enhance its osteogenic potential. In the present study, we focused on VEGF in MSC-CM and evaluated the angiogenic and osteogenic potentials of MSC-CM for bone regeneration. Methods: Cytokines in MSC-CM were measured by enzyme-linked immunosorbent assay (ELISA). Human umbilical vein endothelial cells (HUVECs) were cultured with MSC-CM or MSC-CM with anti-VEGF antibody (MSC-CM + anti-VEGF) for neutralization, and tube formation was evaluated. For the evaluation of bone and blood vessel formation with micro-computed tomography (micro-CT) and for the histological and immunohistochemical analyses, a rat calvarial bone defect model was used. Results: The concentrations of IGF-1, VEGF, and $TGF-{\beta}1$ in MSC-CM were $1515.6{\pm}211.8pg/mL$, $465.8{\pm}108.8pg/mL$, and $339.8{\pm}14.4pg/mL$, respectively. Tube formation of HUVECs, bone formation, and blood vessel formation were increased in the MSC-CM group but decreased in the MSC-CM + anti-VEGF group. Histological findings suggested that new bone formation in the entire defect was observed in the MSC-CM group although it was decreased in the MSC-CM + anti-VEGF group. Immunohistochemistry indicated that angiogenesis and migration of endogenous stem cells were much more abundant in the MSC-CM group than in the MSC-CM + anti-VEGF group. Conclusions: VEGF is considered a crucial factor in MSC-CM, and MSC-CM is proposed to be an adequate therapeutic agent for bone regeneration with angiogenesis.

Hypoxia-dependent mitochondrial fission regulates endothelial progenitor cell migration, invasion, and tube formation

  • Kim, Da Yeon;Jung, Seok Yun;Kim, Yeon Ju;Kang, Songhwa;Park, Ji Hye;Ji, Seung Taek;Jang, Woong Bi;Lamichane, Shreekrishna;Lamichane, Babita Dahal;Chae, Young Chan;Lee, Dongjun;Chung, Joo Seop;Kwon, Sang-Mo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.203-213
    • /
    • 2018
  • Tumor undergo uncontrolled, excessive proliferation leads to hypoxic microenvironment. To fulfill their demand for nutrient, and oxygen, tumor angiogenesis is required. Endothelial progenitor cells (EPCs) have been known to the main source of angiogenesis because of their potential to differentiation into endothelial cells. Therefore, understanding the mechanism of EPC-mediated angiogenesis in hypoxia is critical for development of cancer therapy. Recently, mitochondrial dynamics has emerged as a critical mechanism for cellular function and differentiation under hypoxic conditions. However, the role of mitochondrial dynamics in hypoxia-induced angiogenesis remains to be elucidated. In this study, we demonstrated that hypoxia-induced mitochondrial fission accelerates EPCs bioactivities. We first investigated the effect of hypoxia on EPC-mediated angiogenesis. Cell migration, invasion, and tube formation was significantly increased under hypoxic conditions; expression of EPC surface markers was unchanged. And mitochondrial fission was induced by hypoxia time-dependent manner. We found that hypoxia-induced mitochondrial fission was triggered by dynamin-related protein Drp1, specifically, phosphorylated DRP1 at Ser637, a suppression marker for mitochondrial fission, was impaired in hypoxia time-dependent manner. To confirm the role of DRP1 in EPC-mediated angiogenesis, we analyzed cell bioactivities using Mdivi-1, a selective DRP1 inhibitor, and DRP1 siRNA. DRP1 silencing or Mdivi-1 treatment dramatically reduced cell migration, invasion, and tube formation in EPCs, but the expression of EPC surface markers was unchanged. In conclusion, we uncovered a novel role of mitochondrial fission in hypoxia-induced angiogenesis. Therefore, we suggest that specific modulation of DRP1-mediated mitochondrial dynamics may be a potential therapeutic strategy in EPC-mediated tumor angiogenesis.

Therapeutic Angiogenesis by Intramyocardial Injection of pCK-VEGF165 in Pigs (돼지에서 pCK-VEGF165의 심근내 주입에 의한 치료적 혈관조성)

  • Choi Jae-Sung;Han Woong;Kim Dong Sik;Park Jin Sik;Lee Jong Jin;Lee Dong Soo;Kim Ki-Bong
    • Journal of Chest Surgery
    • /
    • v.38 no.5 s.250
    • /
    • pp.323-334
    • /
    • 2005
  • Background: Gene therapy is a new and promising option for the treatment of severe myocardial ischemia by therapeutic angiogenesis. The goal of this study was to elucidate the efficacy of therapeutic angiogenesis by using VEGF165 in large animals. Material and Method: Twenty-one pigs that underwent ligation of the distal left anterior descending coronary artery were randomly allocated to one of two treatments: intramyocardial injection of pCK-VEGF (VEGF) or intramyocardial injection of pCK-Null (Control). Injections were administered 30 days after ligation. Seven pigs died during the trial, but eight pigs from VEGF and six from Control survived. Echo-cardiography was performed on day 0 (preoperative) and on days 30 and 60 following coronary ligation. Gated myocardial single photon emission computed tomography imaging (SPECT) with $^{99m}Tc-labeled$ sestamibi was performed on days 30 and 60. Myocardial perfusion was assessed from the uptake of $^{99m}Tc-labeled$ sestamibi at rest. Global and regional myocardial function as well as post-infarction left ventricular remodeling were assessed from segmental wall thickening; left ventricular ejection fraction (EF); end systolic volume (ESV); and end diastolic volume (EDV) using gated SPECT and echocardiography. Myocardium of the ischemic border zone into which pCK plasmid vector had been injected was also sampled to assess micro-capillary density. Result: Micro-capillary density was significantly higher in the VEGF than in Control ($386\pm110/mm^{2}\;vs.\;291\pm127/mm^{2};\;p<0.001$). Segmental perfusion increased significantly from day 30 to day 60 after intramyocardial injection of plasmid vector in VEGF ($48.4\pm15.2\%\;vs.\;53.8\pm19.6\%;\;p<0.001$), while no significant change was observed in the Control ($45.1\pm17.0\%\;vs.\;43.4\pm17.7\%;\;p=0.186$). This resulted in a significant difference in the percentage changes between the two groups ($11.4\pm27.0\%\;increase\;vs.\;2.7\pm19.0\%\;decrease;\;p=0.003$). Segmental wall thickening increased significantly from day 30 to day 60 in both groups; the increments did not differ between groups. ESV measured using echocardiography increased significantly from day 0 to day 30 in VEGF ($22.9\pm9.9\;mL\;vs.\;32.3\pm9.1\;mL;\; p=0.006$) and in Control ($26.3\pm12.0\;mL\;vs.\;36.8\pm9.7\;mL;\;p=0.046$). EF decreased significantly in VEGF ($52.0\pm7.7\%\;vs.\;46.5\pm7.4\%;\;p=0.004$) and in Control ($48.2\pm9.2\%\;vs.\;41.6\pm10.0\%;\;p=0.028$). There was no significant change in EDV. The interval changes (days $30\~60$) of EF, ESV, and EDV did not differ significantly between groups both by gated SPECT and by echocardiography. Conclusion: Intramyocardial injection of pCK-VEGF165 induced therapeutic angiogenesis and improved myocardial perfusion. However, post-infarction remodeling and global myocardial function were not improved.